> Test 3: + 2.8(146-150), 3.1(163-167), 3.2(169-172), $3.3(180-181), 5.1(265-269), 5.6(301-304) \&$ apps

- Formatting same as prior tests. Test 3 is majority new material.
- hw, problem sets, \& clicker questions [solutions online]
- computations, definitions, critical reasoning \& "big picture"
- 1.1, 1.2 \& 1.5: Gaussian elimination, algebra and geometry of solutions of systems of equations...
- 1.4: connects everything together
- 1.3 and 1.7: algebra and geometry of vectors (linear combinations/mixing, span, li...)
- 2.1 and 2.2: matrix algebra: $A+B, c A, A^{T}, A B, A_{2 \times 2}^{-1}$, $\operatorname{det}\left(A_{2 \times 2}\right)$
- 2.3: theorem 8: what makes a matrix invertible [connects 2.2 to 1.1, 1.2, 1.3 and 1.7] \& condition \#
- 1.8 (62, 65, 67-68), 1.9 (70-75), 2.7: linear transformations
- apps: Hill cipher, computer graphics/animations, computer speed and reliability
- 3.1-3.3: algebra and geometry of determinants, invertibility
- 2.8: subspace, basis, column space and null space
- 5.1: eigenvectors \& eigenvalues alg \& geom, nullspace $(A-\lambda /$)
- 5.6: eigenvector decomposition, limit, trajectory \& populations

Replacement $r_{j}^{\prime}=-3 r_{1}+r_{j}$ are shear matrices when written in
elementary matrix form like $\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]$ or $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$-preserve
the determinant (area, volume...) of a matrix and turns parallelograms and parallelopipeds formed by the vectors into rectangles and rectangular prisms

In verse

What Makes You Invertible

Music by One Direction \& idea adapted from Art Benjamin Interpreted by Dr. Sarah and Joel Landsberg
Baby you'll light up if one of these facts is so, but you'll need n square columns and rows:

- Like when \mathbb{R}^{n} is the span of the matrix columns
- That's when you know oh-oh invertible!
- If always you uniquely solve $A \vec{x}$ is \vec{b}
- Or if your columns have no linear dependency
- Or if matrix reduces to identity

Not zero - no no
That makes it not invertible!
Shout out if one of these facts is so... but you'll need n square columns and rows:

- Like when your matrix determinant's non-zero

Is when you know oh-oh-that makes it invertible!

Subspace: it's linear (linear combinations)
Subspace basis: span (full row pivots) + l.i. (full column pivots)
reduced $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
column space of $A=$ span of columns [$c_{1} \vec{v}_{1}+\ldots$] or equations like $b_{1}-2 b_{2}+b_{3}=0$ from $[A \mid \vec{b}]$ reduction.
A basis is \{column 1, ... of original matrix $\}$ - they span the column space via linear combinations and are l.i.
null space of $A=$ solutions of $A \vec{x}=\overrightarrow{0}$. Aug: $\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Parametrize: $s\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. A basis is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$

- $A \vec{x}=\lambda \vec{x}$: matrix multiplication to scalar multiplication
- determinant $(A-\lambda I)=0$ or Maple for λ
- plug in each λ for nullspace of $(A-\lambda I)$ or use Maple for basis for eigenspace
- $A \vec{x}=\lambda \vec{x}$: A keeps eigenvectors \vec{x} on the same line scaled by λ, so can reason geometrically for transformations
A := Matrix([[21/40,3/20],[19/240,39/40]]);
Eigenvectors(A); $\left[\begin{array}{l}\frac{1}{2} \\ 1\end{array}\right],\left[\begin{array}{cc}-6 & \frac{6}{19} \\ 1 & 1\end{array}\right]$
The eigenvector decomposition and trajectory:
$\left[\begin{array}{l}\text { Owls }_{k} \\ \text { Rats }_{k}\end{array}\right]=c_{1}\left(\frac{1}{2}\right)^{k}\left[\begin{array}{c}-6 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}\frac{6}{19} \\ 1\end{array}\right]$

