I am feeling comfortable with the by-hand method of Gaussian/Echelon form with row reductions being used to obtain 0s below the diagonal:
a) Definitely
b) Somewhat
c) Unsure
d) Somewhat not
e) What are row reductions?

Use x_{1} term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
$\left[\begin{array}{cccc}2 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 7 \\ 1 & 0 & -1 & -1\end{array}\right]$

Use x_{1} term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$

$$
\begin{aligned}
& {\left[\begin{array}{llcc}
2 & 2 & 2 & 3 \\
1 & 2 & 3 & 4 \\
3 & 4 & 5 & 7 \\
1 & 0 & -1 & -1
\end{array}\right] \xrightarrow{\xrightarrow{r_{1} \leftrightarrow r_{4}}\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
1 & 2 & 3 & 4 \\
3 & 4 & 5 & 7 \\
2 & 2 & 2 & 3
\end{array}\right] \xrightarrow{r_{2}^{\prime}=-r_{1}+r_{2}}}\left[\begin{array}{llcc}
1 & 0 & -1 & -1 \\
0 & 2 & 4 & 5 \\
3 & 4 & 5 & 7 \\
2 & 2 & 2 & 3
\end{array}\right] \xrightarrow{r_{3}^{\prime}=-3 r_{1}+r_{3}}\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 2 & 4 & 5 \\
0 & 4 & 8 & 10 \\
2 & 2 & 2 & 3
\end{array}\right] \xrightarrow{r_{4}^{\prime}=-2 r_{1}+r_{4}}} \\
& {\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 2 & 4 & 5 \\
0 & 4 & 8 & 10 \\
0 & 2 & 4 & 5
\end{array}\right]}
\end{aligned}
$$

Use x_{1} term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
$\left[\begin{array}{llcc}2 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 7 \\ 1 & 0 & -1 & -1\end{array}\right] \xrightarrow{r_{1} \leftrightarrow r_{4}}\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 7 \\ 2 & 2 & 2 & 3\end{array}\right] \xrightarrow{r_{2}^{\prime}=-r_{1}+r_{2}}$
$\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & 2 & 4 & 5 \\ 3 & 4 & 5 & 7 \\ 2 & 2 & 2 & 3\end{array}\right] \xrightarrow{\text { re-3r }+r_{3}}\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & 2 & 4 & 5 \\ 0 & 4 & 8 & 10 \\ 2 & 2 & 2 & 3\end{array}\right] \xrightarrow{r_{3}^{\prime}=-2 r_{1}+r_{4}}$
$\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & 2 & 4 & 5 \\ 0 & 4 & 8 & 10 \\ 0 & 2 & 4 & 5\end{array}\right]$

Use x_{2} term in eq2 to eliminate terms below it via $r_{k}^{\prime}=c r_{2}+r_{k}$
$\xrightarrow[r_{4}^{\prime}=-r_{2}+r_{4}]{r_{3}^{\prime}=-2 r_{2}+r_{3}}\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & 2 & 4 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Use x_{1} term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$
$\left[\begin{array}{llcc}2 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 7 \\ 1 & 0 & -1 & -1\end{array}\right] \xrightarrow{r_{1} \leftrightarrow r_{4}}\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 7 \\ 2 & 2 & 2 & 3\end{array}\right] \xrightarrow{r_{2}^{\prime}=-r_{1}+r_{2}}$
$\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & 2 & 4 & 5 \\ 3 & 4 & 5 & 7 \\ 2 & 2 & 2 & 3\end{array}\right] \xrightarrow{\xrightarrow{\prime}=-3 r_{1}+r_{3}}\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & 2 & 4 & 5 \\ 0 & 4 & 8 & 10 \\ 2 & 2 & 2 & 3\end{array}\right] \xrightarrow{r_{4}^{\prime}=-2 r_{1}+r_{4}}$
$\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & 2 & 4 & 5 \\ 0 & 4 & 8 & 10 \\ 0 & 2 & 4 & 5\end{array}\right]$

Use x_{2} term in eq2 to eliminate terms below it via $r_{k}^{\prime}=C r_{2}+r_{k}$
$\xrightarrow[r_{4}^{\prime}=-r_{2}+r_{4}]{r_{3}^{\prime}=-2 r_{2}+r_{3}}\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & 2 & 4 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Critical Analysis: Any [0 00 ... 0 nonzero] ? (inconsistent)?

Use x_{1} term in eq1 to eliminate terms below it via $r_{k}^{\prime}=c r_{1}+r_{k}$

Use x_{2} term in eq2 to eliminate terms below it via $r_{k}^{\prime}=c r_{2}+r_{k}$
$\xrightarrow[r_{4}^{\prime}=-r_{2}+r_{4}]{r_{3}^{\prime}=-2 r_{2}+r_{3}}\left[\begin{array}{cccc}1 & 0 & -1 & -1 \\ 0 & 2 & 4 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Critical Analysis: Any [0 00 ... 0 nonzero] ? (inconsistent)? No. So solve via pivots (any variable missing a pivot is free). pivots: 1 for $x_{1} \& 2$ for $x_{2}, x_{3}=t$ Use row 2: $x_{2}=\frac{5}{2}-2 t$, row 1: $x_{1}=-1+t$. Sols: 4 planes intersect in line $\left(-1+t, \frac{5}{2}-2 t, t\right)$

How many solutions does each have?

Where in the room do we see each of these?

How many solutions does each have?
Where in the room do we see each of these?

1 solution corner of room
infinite solutions book spine

0 solutions hands + table

What does the Gaussian form look like in terms of pivots?

How many solutions does each have?
Where in the room do we see each of these?

1 solution corner of room
infinite solutions book spine

0 solutions hands + table

What does the Gaussian form look like in terms of pivots? full pivots consistent \& 1 variable w/ no pivot [000 nonzero]

Where in the room do we see each of these?

1 solution corner of room
infinite solutions book spine
0 solutions hands + table

What does the Gaussian form look like in terms of pivots? full pivots consistent \& 1 variable w/ no pivot [000 nonzero]

Note: consistent \& only 2 variables $w /$ no pivots in \mathbb{R}^{3} means a plane of solutions. Ex: $x+y+z=1$. Augmented matrix: [1111] $y=s, z=t$, pivot for x gives $x=1-y-z$. Sols are plane $(1-s-t, s, t)$

