Timeline of Logarithms

1550: John Napier ${ }^{1}$ was born in Edinburgh Scotland.
1552: Jobst Bürgi was born in Switzerland.
1588: Bürgi began working on his logarithms ${ }^{2}$ independent of Napier (I was unable to find the base to which Bürgi created his logarithms).
~1594: John Napier started work on his tables and spent the next twenty years completing. The tables were for trigonometric applications and gave the logarithms for the sine of angles 30° to 90°. Although Napier did not actually use in his logarithms it could be said his base was roughly $1 / e$.
1614: Napier published "Mirifici logarithmorum canonis descriptio" in which he discusses his logarithms.
10 March 1615: Henry Briggs wrote a letter roughly translating questions Napier's use of his base $(1 / e)$ and why he did not use base 10 and $\log 1=0$. Napier replied that he too had the idea but could not create the tables due to an illness.
Summer 1615: Henry Briggs visited John Napier and they spent a month working on the tables for the logarithms to base 10.
1616: Henry Briggs visited John Napier a second time.
4 April 1617: John Napier passed away.
1617: Briggs published his "Logarithmorum Chilias Prima" which contained his tables for logarithms to base 10 .
1619: "Mirifici logarithmorum canonis constructio" is published in which the method Napier used for constructing his logarithms is discussed.
1620: Bürgis' were published in his "Arithmetische und Geometrische ProgressTabulen."

Bürgi's work went unnoticed due to the beginning of the Thirty Years' War.
1622: William Oughtred invented the slide rule, which offered an even quicker way of calculating logarithms.
1632: Jobst Bürgi passed away.
1675: Newton discovers the fact that the $d / d x \ln x=1 / x$.
1685: John Wallis realized that logarithms could be defined as exponents.
1694: Johann Bernoulli also realized that logarithms could be defined as exponents.
1694 to present: Logarithms had reached their full potential and most of what was done after 1694 was calculating logarithms to different bases.

[^0]
[^0]: ${ }^{1}$ Napier is also written as Neper and numerous other forms
 ${ }^{2}$ Logarithm means "reckoning number"

