The fifth postulate and non-Euclidean Geometry A timeline by Ederson Moreira dos Santos

300 B. C.	Euclid's Elements were published. The fifth postulate is not self-evident, and in virtue of its
	relative complexity and scant intuitive appeal, in the sense that it could be proved, many
	mathematicians tried to present a proof of it.
300 B.C	Aristoteles linked the problem of parallels lines to the question of the sum of the angles of a
	triangle in his Prior Analytics.
100 B.C	Diodorus, and Anthiniatus proved many different prepositions about the fifth postulate.
410-485	Proclus described an attempt to prove the parallel postulate due to Ptolemy. Ptolemy gave a false
	demonstration of if two parallel lines are cut by a transversal, then the interior angles on the same
	side add up to two right angles, which is an assertion equivalent to the fifth postulate. Proclus also
	gave his own (erroneous) proof, because he assumed that the distance between two parallel lines
	is bounded, which is also equivalent to the fifth postulate.
500's	Agh_n_s (Byzantine scholar) proved the existence of a quadrilateral with four right angles, which
	lead to a proof of the fifth postulate, and this was the key point of most medieval proofs of the
	parallel postulate, but his proof is based on an assertion equivalent to the fifth postulate.
900's	Ab_ 'Al_ ibn S_n_ (980-1037) defined parallel straight lines as equidistant lines, which is an
	equivalent proposition to the fifth postulate. The Egyptian physicist Abu 'Al_ Ibn al-Haytham
	(965-1041) presented a false proof for the fifth postulate, using the same idea of equidistant lines,
	to define parallel lines. The first attempt to prove the parallel postulate that is based on a more
	intuitive postulate is the theory of parallel lines of 'Umar Khayy_m, who used the idea of to
	construct a quadrilateral. This same idea was latter on (18 th century) used by Saccheri, and it has
	played a very important rule in the history of non-Euclidean geometry.
1600's	Pietro Antonio Cataldi (1548-1626), from Italy, assuming that there exist equidistant lines
	deduced a number of assertions from which it is already possible to prove the parallel postulate.
	John Wallis (1616-1703), English mathematician, also wrote a treatise dealing with the parallel
	postulate, where he proved the parallel postulate resting on the following postulate: to every
	figure, there exists a similar figure of arbitrary magnitude. Both assumption come to be
	equivalent to the fifth postulate.

1700's	Girolamo Saccheri (1667-1733), an Italian mathematician, made what turned out to be an
	important attempt to prove the parallel postulate, using a quadrilateral. In 1778 the Swiss
	mathematician Louis Bertrand (1731-1812) published a clever proof of the parallel postulate. But
	a mistake in his arguments was quickly brought to light by the Russian Emel'yanovi_ Gur'ev
	(1746-1813), and he, using another false conclusion, proved the parallel postulate.
1800's	In the first half of the 19 th century there appeared several erroneous proofs of the parallel
	postulate by the Hungarian mathematician Farkas Bolyai. Friedrich Ludwig Watcher (1792-
	1817), a German student under Gauss, had attempted to prove the fifth postulate, and he believed
	that he had been successful. Bernhard Friedrich Thibaut (1775-1832) gave on other erroneous
	proof of the postulate. As we can notice above, during 2000 years, many mathematicians
	presented fake proofs, or proofs using assumptions that were equivalent to the fifth postulate, to
	prove it. Gauss was the first to have a clear view of a geometry independent of the fifth postulate
	(it was the birth of non-Euclidean geometry), and after him N.I. Lobatschewsky and Johann
	Bolyai. They share the honour of having made the first really systematic study of what we now
	call hyperbolic geometry. The existence of such non-Euclidean geometries proves that the fifth
	postulate is independent of the other ones, that is, it cannot be proved.
-	Ferdinand Karl Schweikark (1780-1859) developed a geometry independent of Euclid's
	hypothesis (fifth postulate).
1823	Lobatschewsky thought about Imaginary geometry. Bolyai discovered a formula that is the key
	for all Non-Euclidean trigonometries. The most interesting of the Non-Euclidean construction
	given by Bolyai is that for the squaring of the circle.
-	The full recognition that spherical geometry is itself a kind of Non-Euclidean geometry, without
	parallels, is due to Riemann (1826-1866).
1823-1860	The acceptance of the Non-Euclidean geometry was delayed by some reasons, such as the
	difficult of mastering Lobatschewsky's work written in Russian.
1860-1863	The correspondences between Gauss and Schumacher, published between 1860 and 1863, the
	numerous references to the works of Lobatschewsky and Bolyai, were a big step in direction to
	spread non-Euclidean geometries.
1871-1873	Klein suggested calling the geometries of Bolyai and Lobachewsky, Riemann, and Euclid,
	respectively, Hyperbolic, Elliptic, and parabolic.

1882	Henri Poincaré (1854-1912) presented two models, in a half-plane (which one I will present in
	my final project) and in a circle, for hyperbolic geometry.
1900's	Non-Euclidean geometries were widely spread, and the study of geometry on surfaces gave
	origin to differential geometry. Non-Euclidean geometry became a very useful tool for many
	areas, and a very wide field of research.

REFERENCES

- [1] H. S. M. Coxeter, F. R. S., Non-Euclidean geometry. University of Toronto Press, Great Britain 1961.
- [2] Wolfe, Harold E., Introduction to non-Euclidean geometry. The Dryden Press, New York, 1948.
- [3] Greenberg, M. J., Euclidean and non-Euclidean geometry, development and history. W. H. Freeman and Company, New York, 1980.
- [4] Rozenfel'd, B. A. A history of non-Euclidean geometry. (Studies in the history of mathematical and physical sciences; 12). Translation of: Istoriia neevklidovo_ geometrii. Springer-Verlag, New York, 1988.
- [5] Bonola, Roberto Non-Euclidean geometry, a critical and historical study of its developments. Dover publications, INC, 1955.