{VERSION 3 0 "APPLE_68K_MAC" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 45 "Keith Seal, Sarah Thompson , Michelle McCrain " }}{PARA 0 "" 0 "" {TEXT -1 9 "p 203 #7 " }}{PARA 0 "" 0 "" {TEXT -1 292 "There is a 0.5 kg mass hanging on a spring tha t streches the spring 2 m. The mass is pulled down 0.5 m and is given \+ an upward velocity of 0.5 m/s. What is the equation of simple harmonic motion for the spring? How long will it take for the spring to first \+ return to the equilibrium position. " }}{PARA 0 "" 0 "" {TEXT -1 1 " \+ " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 182 "The spring constant for this problem would involve using the initial condtion of the spring.The eq uation used to find the k is mg=kx, where m is 0.5 kg , g=9,8 m/s^2, a nd x = 0.5 m. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "restart: \+ " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "k:=0.5*9.8/2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"kG$\"++++]C!\"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "w:=sqrt(k/0.5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"wG$\"+iVf8A!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 105 "We obtained k as mg/l (where l i s in meters instead of cm, to match with the units of gravity), and th en" }}{PARA 0 "" 0 "" {TEXT -1 25 "found w=sqrt(k/m). Thus," }{TEXT 256 17 "natural frequency" }{TEXT -1 24 " is 2.21/(2Pi) and the " } {TEXT 257 6 "period" }{TEXT -1 14 " is 2Pi/2.21 " }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 37 "eq1:=diff(x(t),t$2) + w^2 * x(t) = 0;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq1G/,&-%%diffG6$-%\"xG6#%\"tG-%\"$ G6$F-\"\"#\"\"\"F*$\"+********[!\"*\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 76 "eq2:=dsolve(\{diff(x(t),t$2) + w^2 * x(t) = 0, x(0)=0 .5, D(x)(0)=0.5\}, x(t));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq2G/- %\"xG6#%\"tG,&-%$sinG6#,$F)$\"+iVf8A!\"*$\"+d(p(eA!#5-%$cosGF-$\"+++++ ]F4" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "y1:=unapply(rhs(eq2) ,t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#y1GR6#%\"tG6\"6$%)operatorG %&arrowGF(,&-%$sinG6#,$9$$\"+iVf8A!\"*$\"+d(p(eA!#5-%$cosGF/$\"+++++]F 7F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 100 "We obtained the initial conditions in the above using th at 0.5 m the amount the mass was pulled down" }}{PARA 0 "" 0 "" {TEXT -1 103 "below the equilibrium point, which is x(0), and that x'(0)=0.5 m/s, since we are told that the initial " }}{PARA 0 "" 0 "" {TEXT -1 91 "velocity is 0.5m/s. Hence, by looking at the solution, we see tha t the Amplitude is 0.5 m." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 " " 0 "" {TEXT -1 32 "Here is the plot of the spring. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "plot(y1(t),t=0..4*Pi/w);" }}{PARA 13 "" 1 "" {INLPLOT "6%-%'CURVESG6$7hq7$\"\"!$\"1+++++++]!#;7$$\"1&\\AVZ@q=' !#<$\"1#)GS$4m:E&F+7$$\"1*\\k[H/uB\"F+$\"1S%ob2'fCaF+7$$\"1(p8+,pl]\"F +$\"1`0!*o=#RY&F+7$$\"1%*G;DPtvF+$ \"1$[>%[p_'[&F+7$$\"1#47.W)*[/#F+$\"1[c@?'GV[&F+7$$\"1!p')yz![z@F+$\"1 Q$4dEjsZ&F+7$$\"1*Gha:jSJ#F+$\"1@k*\\:P`Y&F+7$$\"1f$\\>!4Z>HF+$\"1?J9. $f>N&F+7$$\"1HuV['y[_$F+$\"1@m0%>2E9&F+7$$\"1_+Z7-sVZF+$\"1CvtZ&[pW%F+ 7$$\"1X)))Q_W-N&F+$\"15;AhwxwRF+7$$\"1QwIN)on&fF+$\"1w9?G,.NMF+7$$\"1% **3D^%4>lF+$\"19UI**))HxGF+7$$\"1].r*=?93(F+$\"1zi4xM/vAF+7$$\"1jzFden jwF+$\"1l-7,fY9;F+7$$\"1ub%[_JfC)F+$\"1&pcBDe5F*F/7$$\"1S$p\"p65[))F+$ \"1w#*)*yg)>+#F/7$$\"10J\\83F]%*F+$!1%)pCdVg-`F/7$$\"1dI@H4005!#:$!1L# [J;G!\\7F+7$$\"1.o2xZ2l5Fiq$!1dC[OzxX>F+7$$\"12MZ#o;o7\"Fiq$!1=>'\\oll i#F+7$$\"16+(yee&)=\"Fiq$!1l$y3&yOeKF+7$$\"1f,v\"*3%HC\"Fiq$!1uK%3`')[ w$F+7$$\"12.j&>BtH\"Fiq$!1Qc>qC\"p@%F+7$$\"1<69$Qm(>9Fiq$!1)4*ytQp-]F+ 7$$\"1JDke$R7[\"Fiq$!1Ro9ma0i_F+7$$\"1XR9MBrU:Fiq$!1fN&z>JTU&F+7$$\"1* =%y%[Avb\"Fiq$!1(zrsfi#[aF+7$$\"1MWUNELs:Fiq$!16Ni)*)QlY&F+7$$\"1yY1'y Ure\"Fiq$!1..(4YS*yaF+7$$\"1B\\qOH&>g\"Fiq$!11UpcRX&[&F+7$$\"1n^M(3jnh \"Fiq$!160#fQsg[&F+7$$\"17a)zBt:j\"Fiq$!1O./%3&z![&F+7$$\"1cci)Q$QY;Fi q$!1o[UAxipaF+7$$\"1,fERN>h;Fiq$!1#\\IBI#e_aF+7$$\"1?Cu\"o*)\\r\"Fiq$! 1wUeywcT`F+7$$\"1R*=U#eyoFiq$!1_B*[N(f/SF+7$$\"1Cxj9M50?Fiq$!1a'Hn)\\-FNF+ 7$$\"1HF+7$$\" 1]_`#R?Ea#Fiq$\"1j2PL)*)**e#F+7$$\"1^x?aYW.EFiq$\"1WOabG!e@$F+7$$\"1aE q8.IfEFiq$\"1O(*3@'y%RPF+7$$\"1dv>tf::FFiq$\"13Z`*ogg?%F+7$$\"1bISA96%H\"3 'HFiq$\"1/nZqr0AaF+7$$\"10(>LC^!))HFiq$\"1/4e&*)RFY&F+7$$\"18__X&*G:IF iq$\"1e]S6#pN[&F+7$$\"1nzi'p3*GIFiq$\"1*o`lN7l[&F+7$$\"1@2tZy_UIFiq$\" 1RWI<%pW[&F+7$$\"1vM$))*p9cIFiq$\"1!*)e-DUuZ&F+7$$\"1Gi$*\\hwpIFiq$\"1 E@jTsVlaF+7$$\"1ra8vBgGJFiq$\"1_I`!)\\sc`F+7$$\"19ZL+'Qu=$Fiq$\"164<5& ys:&F+7$$\"12R&ev0!4LFiq$\"1r%Qf!H'RZ%F+7$$\"1#\\'>G1ZoLFiq$\"1ixA\"\\ J%=SF+7$$\"1y!R0]NzU$Fiq$\"1s:U,UP$\\$F+7$$\"1)Hd@#3Z&[$Fiq$\"1#yrY1@x #HF+7$$\"1=bxVh+VNFiq$\"1*\\qL)Gk9BF+7$$\"1`(G*3$*)og$Fiq$\"1@!*3mgW!f \"F+7$$\"1*)>3uCxqOFiq$\"1,PdVw(\\M)F/7$$\"1C2HRV)*>F+7$$\"1Xw!=S!pjRFiq$!1!\\)GY;q4E F+7$$\"1o&HD6F#>SFiq$!1(pb:<;==$F+7$$\"1Hi^1M%*zSFiq$!18oYhg/_PF+7$$\" 1*)G]+(f19%Fiq$!1lM)z4-YD%F+7$$\"1+HT,!*y(>%Fiq$!1$4(eV9adYF+7$$\"17HK -$=\\D%Fiq$!1!*oJ$p%4')\\F+7$$\"1#pLG)[j9VFiq$!1=sv%\\LVC&F+7$$\"1uWMj 9NuVFiq$!1x:c@v16aF+7$$\"1&pn'*RVNS%Fiq$!1@wHVOLeaF+7$$\"1;4*fLNFV%Fiq $!1h;e>d\"G[&F+7$$\"1FD:/8LZWFiq$!1UA6wqZ'[&F+7$$\"1QTJss#>Y%Fiq$!1Jx \"zb6W[&F+7$$\"1[dZSK_wWFiq$!1'))>5K@mZ&F+7$$\"1ftj3#>6\\%Fiq$!1-d*p\\ 9JY&F+7$$\"1zCc7'>I\"z%Fiq$!1S1m:*)\\))RF+7$ $\"1&)RgNK]^[Fiq$!1N?Dj=c_MF+7$$\"1.#fB,17\"\\Fiq$!1w(3g'4dgGF+7$$\"1A W6*y34(\\Fiq$!1rf[o4p=AF+7$$\"1R>YS%pd-&Fiq$!1%HH')>wWf\"F+7$$\"1b%4=4 I13&Fiq$!1%*4Jrzvn%*F/7$$\"1Q]F*e1N9&Fiq$!1\"zE4S'py=F/7$$\"1@1u'3$Q1_ Fiq$\"1f8.?/qYdF/7$$\"11+jv0ii_Fiq$\"16*z*p\\rZ7F+7$$\"1\"R>X1e)=`Fiq$ \"1+1-/!\\9!>F+7$$\"1BADd*=)y`Fiq$\"1\"4im$>\"ec#F+7$$\"1c])*\\)z(QaFi q$\"1al&)\\#R]=$F+7$$\"1&*y;v+<'\\&Fiq$\"1e%G*)Hy`s$F+7$$\"1N2N+.c`bFi q$\"1&okC$\\n0UF+7$$\"1++ppv!pn&Fiq$\"1]SmW******\\F+-%'COLOURG6&%$RGB G$\"#5!\"\"F(F(-%+AXESLABELSG6$Q\"t6\"%!G-%%VIEWG6$;F($\"+#e2pn&!\"*%( DEFAULTG" 2 349 262 262 2 0 1 0 2 9 0 4 2 1 45 45 10030 0 10056 10074 0 0 0 20530 0 12020 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "period:=evalf(2*Pi/w);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'periodG$\"+\"z`%QG!\"*" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 148 "The period of the mass would be 2.84 seconds, whi ch would be the time it takes for the mass to return to the equilbrium point after one oscillation." }}}}{MARK "0 0 0" 36 }{VIEWOPTS 1 1 0 1 1 1803 }