{VERSION 3 0 "APPLE_PPC_MAC" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 24 "Gabriel, Gabe, and Chris" }}{PARA 0 "" 0 "" {TEXT -1 9 "#5. p.203" }}{PARA 0 "" 0 "" {TEXT -1 421 "We are given a mass of 5kg is attached to a spring hanging from t he ceiling, which stretches it .5m when it comes to rest at equilibriu m. The mass is then pulled down .1m below the equilibrium point and g iven upward velocity of .1m/sec. We are then asked to determine the e quation for the simple harmonic motion of the mass and also the time t hat the mass will first reach it minimum height after being set into m otion." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 233 "eq1 is the general differential e quation for simple harmonic motion undamped and no external forces. Th e model differential equation for a weight attached to a spring is mx \"+bx'+kx=f(t). In this case, m=5kg, b=0, k=mg/l, and f(t)=0. " }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "eq1:=diff(x(t),t$2) + w^2 * \+ x(t) = 0;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq1G/,&-%%diffG6$-%\"x G6#%\"tG-%\"$G6$F-\"\"#\"\"\"*&)%\"wGF1\"\"\"F*F2F2\"\"!" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 83 "Here we solved the general differential e quation (eq1) and defined it as solution. " }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 27 "solution:=dsolve(eq1,x(t));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)solutionG/-%\"xG6#%\"tG,&*&%$_C1G\"\"\"-%$cosG6#*&% \"wGF-F)F-F-F-*&%$_C2GF--%$sinGF0F-F-" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 28 "Here we defined _C1 and _C2." }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 33 "_C1:=A*sin(phi); _C2:=A*cos(phi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$_C1G*&%\"AG\"\"\"-%$sinG6#%$phiGF'" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>%$_C2G*&%\"AG\"\"\"-%$cosG6#%$phiGF'" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 65 "This is our simple harmonic equati on with _C1 and _C2 plugged in." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "solution;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%\"xG6#%\"tG,&*( %\"AG\"\"\"-%$sinG6#%$phiGF+-%$cosG6#*&%\"wGF+F'F+F+F+*(F*\"\"\"-F1F.F +-F-F2F+F+" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "Here we used trig i dentities to simplify the solution." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "eq2:=combine(solution,trig);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq2G/-%\"xG6#%\"tG*&%\"AG\"\"\"-%$sinG6#,&%$phiGF,*& %\"wGF,F)F,F,F," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 107 "Here we defin ed k. k is mg/l. l is the length that the mass stretches the spring. k is our spring constant." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "k:=5*9.8/.5;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"kG$\"+++++)*!\") " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 63 "Here we defined w, which is o ur angular frequency. w=sqrt(k/m)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "w:=sqrt(k/5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\" wG$\"+C()=FW!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 134 "This is our \+ simple harmonic motion equation with the given conditions plugged into it, which is the first thing the problem asked for." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 74 "eq1:=dsolve(\{diff(x(t),t$2) + w^2 * x(t) = 0, x(0)=.1, D(x)(0)=.1\}, x(t));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%$eq1G/-%\"xG6#%\"tG,&-%$sinG6#,$F)$\"+C()=FW!\"*$\"+d(p(eA!#6-%$cos GF-$\"+++++5!#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 55 "Here we unappl ied the equation, so it could be plotted." }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 24 "y1:=unapply(rhs(eq1),t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#y1GR6#%\"tG6\"6$%)operatorG%&arrowGF(,&-%$sinG6#,$9$ $\"+C()=FW!\"*$\"+d(p(eA!#6-%$cosGF/$\"+++++5!#5F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "plot(y1(t),t=0..4*Pi/w);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6%-%'CURVESG6$7br7$\"\"!$\"1+++++++5!#;7$$\"1V+Co`vY: !#<$\"1US,\"y6J,\"F+7$$\"1(3![O2^$4$F/$\"1f^0GZZ@5F+7$$\"13,g?%))o'QF/ $\"19z\\jA'Q-\"F+7$$\"1I,s/hESYF/$\"1y:'3k\\]-\"F+7$$\"1^,%))yVOT&F/$ \"1!z<$oa.D5F+7$$\"1t,'HZ@q='F/$\"1B%zCw>Q-\"F+7$$\"1A)4%[]%G`(F/$\"1% >Y$*[W)=5F+7$$\"1t%fQio'y))F/$\"1oh+bLD55F+7$$\"174$*>#\\C-\"F+$\"1.IW #\\o2)**F/7$$\"1xeZx:.d6F+$\"1%zdE'=eB)*F/7$$\"1gKl]atf9F+$\"1QYS--pV$ *F/7$$\"1V1$QKRCw\"F+$\"1I_R'QUip)F/7$$\"1/7X$pF/7$$\"1'Qb8EA^n#F+$\"1*o24lz8'eF/7$$\"12 !)*pT%QyHF+$\"13.0k,v#o%F/7$$\"1xn`bsafKF+$\"1&H)\\+)HU^$F/7$$\"1Xb2%4 52a$F+$\"1**fF#=H8H#F/7$$\"1Z_zFz$=$QF+$\"1)[y`jP'z)*!#=7$$\"1]\\^hd'H 7%F+$!1+M0E1\"zJ$Ffq7$$\"1O0h$e]SU%F+$!1HTEP8j!p\"F/7$$\"1Bhq0a8DZF+$! 1?JR`sZ>IF/7$$\"1r(e\\ka_-&F+$!1NQQhKx!H%F/7$$\"1?9@%)QPD`F+$!1+Y>C7V' [&F/7$$\"1kk76M3McF+$!1'G\"[:x?:mF/7$$\"13:/QHzUfF+$!1b,7\\-h?wF/7$$\" 1wBQdWq9iF+$!17&[)fE+*Q)F/7$$\"1YKswfh'['F+$!1Ed,_J(f.*F/7$$\"1oGVXRs# z'F+$!13%e%\\)>ug*F/7$$\"1*[UT\">$))4(F+$!1)e!pI!p-+\"F+7$$\"1&=iGN9DD (F+$!1hY2)*)HK,\"F+7$$\"1!)=e\"z'>1uF+$!1'R5d9-:-\"F+7$$\"1G<%4,QI[(F+ $!1`w*=AnQ-\"F+7$$\"1w:II#z)fvF+$!1&Q,Y\\Z]-\"F+7$$\"1C9m\\/sOwF+$!1z! G!)fT]-\"F+7$$\"1s7-p;c8xF+$!1e6+R&\\Q-\"F+7$$\"126RvJmhyF+$!1IBkF?@=5 F+7$$\"1T4w\"ok(4!)F+$!1fLR9()>35F+7$$\"1w28)=my:)F+$!1w->=j_Q**F/7$$ \"161]%pnfI)F+$!1B@7FVN_(*F/7$$\"1zR#oS[\\d)F+$!1?OdCWs2$*F/7$$\"1Yt9> \"HR%))F+$!1pj8q,EJ()F/7$$\"19`z&G:\"Fgy$\"1 *z(4,Qa*o\"F/7$$\"1^h^,Ng#=\"Fgy$\"1,a+*zQ,/$F/7$$\"1YrL$y]<@\"Fgy$\"1 8&[%zzwuUF/7$$\"1S\"e^1)*3C\"Fgy$\"1nIGqZJQaF/7$$\"1%p()f>58F\"Fgy$\"1 wF!=jqcb'F/7$$\"1\\s\"oKAq(Q\"Fgy$\"1 3mV+g`)e*F/7$$\"1O$*)3'e#yT\"Fgy$\"1T(QNQ(z&)**F/7$$\"1%yCK,rMV\"Fgy$ \"1ZM*y'pC75F+7$$\"1K-clh6\\9Fgy$\"1AN=w)f5-\"F+7$$\"1czsT(QpX\"Fgy$\" 1*H%)p$=jB5F+7$$\"1!o&*yJhZY\"Fgy$\"1k38+i(\\-\"F+7$$\"1/M1%*Qes9Fgy$ \"1$H'Q`84D5F+7$$\"1G6BqkS![\"Fgy$\"1QAler(R-\"F+7$$\"1$)3L@c-%\\\"Fgy $\"1**RQO)3\">5F+7$$\"1Q1VsZk2:Fgy$\"1sEZMn`55F+7$$\"1$RIN#RE@:Fgy$\"1 Kv!y1?H)**F/7$$\"1[,juI)[`\"Fgy$\"1HP6Z:>C)*F/7$$\"1#HBs=,Vc\"Fgy$\"1( 4zKZ6/O*F/7$$\"1Ok\")*H>Pf\"Fgy$\"1pwX_73Q()F/7$$\"1U&*o)36Ti\"Fgy$\"1 D+\"\\jf)RzF/7$$\"1[EcxG]a;Fgy$\"1s6@*[8\")*pF/7$$\"1%RFPJNUo\"Fgy$\"1 5ceCIDafF/7$$\"1S@*)\\x'Rr\"Fgy$\"1&*HF&ftt![F/7$$\"1;\\p5atUv0')[1$F/7$$\"1tFZtCVB>Fgy$!1Fgy$!1Ci\"*Rx![d&F/7$$\"1RuY+_%=)>Fgy$!1O*\\2itxe'F/7$$\"1' GAeb8'4?Fgy$!1w'e(*\\-8](F/7$$\"1ybz\\)H.2#Fgy$!1L%)\\!f(y(3*F/7$$\"1% HW-]%*))4#Fgy$!1!fG$R[m8'*F/7$$\"15Ip]\"fu7#Fgy$!1wB(>@,g)**F/7$$\"1=u \"eH)QU@Fgy$!1a2g4;u65F+7$$\"1E=%4WJd<(=#Fgy$!1-x-VW_C5F+7$$\"1R!\\$*pr5F+7$$\"1Ou]nwO;AFgy$!1n0_%*)47,\"F+7$$\"1KemNO'4B#Fgy$!1^*=wIG?)** F/7$$\"1HU#QgfbC#Fgy$!1]$on#4H5)*F/7$$\"1g+yb37wAFgy$!10$[fmB\">$*F/7$ $\"1\"*et2@o1BFgy$!1A/A&p=wl)F/7$$\"16.mDi6OBFgy$!1eq3A_uqyF/7$$\"1IZe V.blBFgy$!1qo'[A4/&pF/7$$\"1)HE/)4l&R#Fgy$!1kec$pwu)eF/7$$\"1myE<;vDCF gy$!1!RVCwX,s%F/7$$\"1-*Qc+.cX#Fgy$!1n'oo3f(zMF/7$$\"1Q*4SRaa[#Fgy$!1s fY4Xoy@F/7$$\"1dwn>Z)G^#Fgy$!1K_%4e*y!\\*Ffq7$$\"1v`MX]JSDFgy$\"1>%)[% Hf]%HFfq7$$\"1W72%H`.EFgy$\"1uKD[I3 *4$F/7$$\"19cB(G58j#Fgy$\"1q*eVb%[)G%F/7$$\"1:TnJ!H%fEFgy$\"1xT#H:8:T& F/7$$\"1HR.y%4%*o#Fgy$\"1#)z>`6C;lF/7$$\"1WPRC**Q>FFgy$\"1xy]%)3M1vF/7 $$\"1X)yp.&3[FFgy$\"1222*RG0L)F/7$$\"1ZRc\\,ywFFgy$\"1@)fRo^/-*F/7$$\" 1++A%y`%QGFgy$\"009%Q********F+-%'COLOURG6&%$RGBG$\"#5!\"\"F(F(-%+AXES LABELSG6$Q\"t6\"%!G-%%VIEWG6$;F($\"+!z`%QG!\"*%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 36 "A is our ampl itude for our equation." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 " A:=evalf(sqrt((.02258769757)^2+.1^2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG$\"+kG>D5!#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 40 "phi i s the phase angle for our equation." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "phi:=evalf(arctan(.1/.02258769757));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$phiG$\"+Btk[8!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 155 "Here we took the derivative of our simple harmonic motion equation and set it equal to zero. This allowed us to find maximums and minimums of our equation. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "deriv:=diff(A*sin(phi+w *t)=0,t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&derivG/,$-%$cosG6#,&$ \"+Btk[8!\"*\"\"\"%\"tG$\"+C()=FWF-$\"+(GA(QX!#5\"\"!" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 52 "This is the time at which our first minim um occured." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "fsolve(deriv ,t=.5..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+Fz\"zf(!#5" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "0 0 0" 24 } {VIEWOPTS 1 1 0 1 1 1803 }