{VERSION 3 0 "APPLE_PPC_MAC" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "restart:with(plots): " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 61 " p. 203, #6. Calman Lankton, Jon Conowall, Katie M." }}{PARA 0 "" 0 "" {TEXT -1 68 " \+ A mass of 5kg is attached to a spring hanging from a ceiling," }} {PARA 0 "" 0 "" {TEXT -1 70 "therby stretching the spring 2m on coming to rest at equilibrium. The" }}{PARA 0 "" 0 "" {TEXT -1 66 "mass is \+ then lifted up 1m above the equilibrium point and given an" }}{PARA 0 "" 0 "" {TEXT -1 68 "upward velocity of 1/3 m/sec. Determine the equa tion for the simple" }}{PARA 0 "" 0 "" {TEXT -1 64 "harmonic motion of the mass. When will the mass first reach its" }}{PARA 0 "" 0 "" {TEXT -1 41 "maximum height after being set in motion." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 65 " First, we will \+ define the spring constant k, and the angular" }}{PARA 0 "" 0 "" {TEXT -1 63 "velocity, w. k is equal to the mass times the force of g ravity" }}{PARA 0 "" 0 "" {TEXT -1 70 "divided by the amount of spring stretch at equilibrium. w is equal to" }}{PARA 0 "" 0 "" {TEXT -1 41 "the square root of k divided by the mass." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "k:=5*9.8/2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"kG $\"++++]C!\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "w:=sqrt(k/ 5);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"wG$\"+iVf8A!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 4 " " }}{PARA 0 "" 0 "" {TEXT -1 64 " Now, using the defined equation for the undamped spring with no" }}{PARA 0 "" 0 "" {TEXT -1 70 "external forces, we can write our de. For the \+ purposes of simplicity," }}{PARA 0 "" 0 "" {TEXT -1 70 "we will let th e upwards direction be positive. Thus our value of x at" }}{PARA 0 " " 0 "" {TEXT -1 68 "time 0 is 1m, and our value of dx/dt, which is equ al to velocity, at" }}{PARA 0 "" 0 "" {TEXT -1 68 "time 0 is 1/3 m/s. \+ With these initial conditions, Maple immediately" }}{PARA 0 "" 0 "" {TEXT -1 67 "gives us the equation for the simple harmonic motion of t he mass. " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 67 "eq1:=dsolve(\{diff(x(t),t$2) + w^2 * x(t) = 0, x(0)=1 , D(x)(0)=1/3\}," }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "x(t));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq1G/-%\"xG6#%\"tG,&-%$sinG6#,$F)$\"+iVf8 A!\"*$\"+0l%e]\"!#5-%$cosGF-$\"\"\"\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "y1:=unapply(rhs(eq1),t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#y1GR6#%\"tG6\"6$%)operatorG%&arrowGF(,&-%$sinG6#,$9$ $\"+iVf8A!\"*$\"+0l%e]\"!#5-%$cosGF/$\"\"\"\"\"!F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 3 " " }}{PARA 0 "" 0 "" {TEXT -1 69 "Now we can plot the function to get a general idea when the mass will" }} {PARA 0 "" 0 "" {TEXT -1 32 "first reach it maximum height. " }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "plo t(y1(t),t=0..4*Pi/2.213594362);" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6%-%'CURVESG6$7^r7$\"\"!$\"\"\"F(7$$\"1C1eo`vY:!#<$\" 17uR](oX+\"!#:7$$\"1[7;P2^$4$F.$\"1&G@$e*fz+\"F17$$\"1r=u0hESYF.$\"1G; k['p,,\"F17$$\"1&\\AVZ@q='F.$\"1z!)=J_>65F17$$\"1>J!H%oxLxF.$\"1jgy.b. 65F17$$\"1VP[6A`!G*F.$\"1sfm`1p45F17$$\"1Pk+e(GF3\"!#;$\"1$pVsDir+\"F1 7$$\"1*\\k[H/uB\"FN$\"1_FFyKX.5F17$$\"1%*G;DPtv=gY5ba%*FN7$$\"1HuV['y[_$FN$\"1!**z90&em\")FN7$$\"1TP XI%*HMTFN$\"1N3R#p=-H(FN7$$\"1_+Z7-sVZFN$\"1Vg<))QQ\"G'FN7$$\"1X)))Q_W -N&FN$\"1L+ydx)R;&FN7$$\"1QwIN)on&fFN$\"1B]s'zYO&RFN7$$\"1%**3D^%4>lFN $\"16`/k/WnFFN7$$\"1].r*=?93(FN$\"1J^q?*4%Q:FN7$$\"1jzFdenjwFN$\"1w7_D Tu4CF.7$$\"1ub%[_JfC)FN$!1>$*zQ'e/1\"FN7$$\"1S$p\"p65[))FN$!1isXg3k(Q# FN7$$\"10J\\83F]%*FN$!1Y*o(>FYsOFN7$$\"1dI@H4005F1$!1vl*)ybM))[FN7$$\" 1.o2xZ2l5F1$!1Z-.Zj0=gFN7$$\"12MZ#o;o7\"F1$!1O[`pJBpqFN7$$\"16+(yee&)= \"F1$!1%z3nVo&))zFN7$$\"1f,v\"*3%HC\"F1$!19e`IDTv')FN7$$\"12.j&>BtH\"F 1$!1+9bE#*oO#*FN7$$\"17dQ*yW&e8F1$!1'Riw#GD3(*FN7$$\"1<69$Qm(>9F1$!1h) 3i6z,+\"F17$$\"1qk,FY8N9F1$!1s\"H&e:o/5F17$$\"1C=*3(G]]9F1$!1Z:s)R@!35 F17$$\"1xrw96(eY\"F1$!19S(>x%>55F17$$\"1JDke$R7[\"F1$!1)H#Hj\"*>65F17$ $\"1%)y^-wg'\\\"F1$!1L,T5M.65F17$$\"1QKRYe(>^\"F1$!1=U80xp45F17$$\"1\" fo-4Wt_\"F1$!1hA7$f$>25F17$$\"1XR9MBrU:F1$!1sV4sR_.5F17$$\"1B\\qOH&>g \"F1$!1xy(*=-o&y*FN7$$\"1,fERN>h;F1$!1YkOJU3o$*FN7$$\"1?Cu\"o*)\\r\"F1 $!1$*=74TD\\))FN7$$\"1R*=U#eyo,()G(FN7$$\"1.nddMs'*=F1$!127\\%R=kA'FN7$$\"19s5OM\"4&>F1$!1!H4#G24 G_FN7$$\"1Cxj9M50?F1$!1tpsKciaTFN7$$\"1H$GFN7$$\" 1Ndwp]tf::FF1$\"1-w@6'RRA*FN7$$\"11.!y%QSvFF1$\"1p=AB% yKp*FN7$$\"1bISAuuoH^GF1$\"1it)QOwQ+\"F1 7$$\"1T33F?%p'GF1$\"1q/+v?]25F17$$\"1L(>%zre#)GF1$\"1L*)=K&>*45F17$$\" 1E'ev4%[xQ\"HF1$\"1MemS&>6,\"F17$$\"17kV OE_HHF1$\"1'pNGl+*45F17$$\"10`x)yn^%HF1$\"1M'pXjqu+\"F17$$\"1)>96%H\"3 'HF1$\"1$3%3+C$Q+\"F17$$\"18__X&*G:IF1$\"1#GTaJ5\"=)*FN7$$\"1Gi$*\\hwp IF1$\"1U2QHsHb%*FN7$$\"19ZL+'Qu=$F1$\"1wc&*=$*e7#)FN7$$\"16V4y@A[KF1$ \"1+`>#f%yYtFN7$$\"12R&ev0!4LF1$\"1i#*\\Kg<[jFN7$$\"1#\\'>G1ZoLF1$\"1d NL(o\\+E&FN7$$\"1y!R0]NzU$F1$\"1`CB1`\"43%FN7$$\"1)Hd@#3Z&[$F1$\"1m6zI ZhsGFN7$$\"1=bxVh+VNF1$\"1*[Fuv\"y<;FN7$$\"1`(G*3$*)og$F1$\"1b&p\\gMp% >F.7$$\"1*)>3uCxqOF1$!13[au;GK7FN7$$\"1C2HRV!4$eS&\\FN7$$\"1@d3 \"p`\"3RF1$!1K/![XY45'FN7$$\"1Xw!=S!pjRF1$!1)p1N3(*Q/(FN7$$\"1o&HD6F#> SF1$!1&y#R.f_!)yFN7$$\"1*)G]+(f19%F1$!1L=pM([1G*FN7$$\"1+HT,!*y(>%F1$! 16NQm@>8(*FN7$$\"17HK-$=\\D%F1$!1$yk,;01***FN7$$\"121XZu%)pUF1$!1Un@XC p.5F17$$\"1-$yDfwZG%F1$!19hoK$Gs+\"F17$$\"1(*fqPdq*H%F1$!1D6\\%F1$! 1lT]i:JQ%*FN7$$\"1*f([;UO8YF1$!1dt+A#*=C\")FN7$$\"1-%\\BXKAn%F1$!1hf*3 2#zssFN7$$\"1.7@)o+6t%F1$!1oc(yvr!)H'FN7$$\"1%f2>'>I\"z%F1$!1%GA=ip4>& FN7$$\"1&)RgNK]^[F1$!1>?0Y(>=*RFN7$$\"1.#fB,17\"\\F1$!1:7PT9jKFFN7$$\" 1AW6*y34(\\F1$!1$*[$\\L&yD9FN7$$\"1R>YS%pd-&F1$!1Z0j`WaC?F.7$$\"1b%4=4 I13&F1$\"1!fl3ZeQ-\"FN7$$\"1Q]F*e1N9&F1$\"1jfQV3t4CFN7$$\"1@1u'3$Q1_F1 $\"1ShW-u**[PFN7$$\"11+jv0ii_F1$\"1Z\"3uXph)[FN7$$\"1\"R>X1e)=`F1$\"1h \"z5B=x%fFN7$$\"1BADd*=)y`F1$\"1d6&RF!yxpFN7$$\"1c])*\\)z(QaF1$\"1gcGP ]4&)yFN7$$\"1N2N+.c`bF1$\"1E&H6k&[B#*FN7$$\"1++ppv!pn&F1$\"0O4J'****** **F1-%'COLOURG6&%$RGBG$\"#5!\"\"F(F(-%+AXESLABELSG6$Q\"t6\"%!G-%%VIEWG 6$;F($\"+#e2pn&!\"*%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 3 " " }}{PARA 0 "" 0 "" {TEXT -1 66 " As you can see from the plot, the mass will rea ch its maximum" }}{PARA 0 "" 0 "" {TEXT -1 66 "height almost immediate ly after it is given its initial velocity. " }}{PARA 0 "" 0 "" {TEXT -1 68 "This makes sense as the mass was given an initial upwards veloc ity. " }}{PARA 0 "" 0 "" {TEXT -1 69 "To determine this value numerica l, we must simply take the derivative" }}{PARA 0 "" 0 "" {TEXT -1 70 " of our SHM equation with respect to t, and set it equal to zero. Then " }}{PARA 0 "" 0 "" {TEXT -1 69 "we can solve for t to find the time w hen the mass will first reach it" }}{PARA 0 "" 0 "" {TEXT -1 15 "maxim um height." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "m:=(diff(eq1,t)=0);" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%\"mG//-%%diffG6$-%\"xG6#%\"tGF-,&-%$cosG6#,$F-$\"+iVf8A!\"*$\"+MLL LL!#5-%$sinGF1$!+iVf8AF5\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 70 "solve(.3333333334*cos(2.213594362*t)-2.213594362*sin(2.213594362 *t)=0," }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 3 "t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+G1*>v'!#6" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 3 " \+ " }}{PARA 0 "" 0 "" {TEXT -1 67 " Thus, our time when the mass fi rst reaches a maximum height is" }}{PARA 0 "" 0 "" {TEXT -1 70 "0.0675 199 seconds. This value agrees with our plot as it is very soon" }} {PARA 0 "" 0 "" {TEXT -1 27 "after the motion was begun." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "1 0 0" 61 }{VIEWOPTS 1 1 0 1 1 1803 }