Pythagorean Theorem

If the rescue squad has a 50 ft ladder and angles it to a building, 35 ft away, how many feet high will it reach?

AA Similarity \implies Pythagorean Theorem

Given a right $\triangle ABC$ with hypotenuse \overline{AB} and shortest side \overline{BC} , construct a perpendicular from \overline{AB} through C by I-12 and label the intersection as D. Now $\triangle ABC \sim \triangle CBD$ by AA as all right angles are congruent by Postulate 4, $\angle ACB \cong CDB$, and $\angle CBA \cong CBD$ by CN 4. By similarity of $\triangle ABC$ and $\triangle CBD$, since the ratio of the hypotenuse to the shorter base side must be the same, $\overline{AB} = \overline{BC}$.

Cross multiply to see \overline{AB} $\overline{BD} = \overline{BC}^2$. Also, $\triangle ABC \sim \triangle ACD$ by AA as $\angle ACB \cong CDA$ by Postulate 4 and $\angle CAB \cong CAD$ by CN 4. $\triangle ABC \sim \triangle ACD$ so the ratio of the hypotenuse to the longer base side must be the same, $\overline{AB} = \overline{AC}$. Cross multiply: \overline{AB} $\overline{AD} = \overline{AC}^2$. By

CN 2, $\overline{AB} \overline{BD} + \overline{AB} \overline{AD} = \overline{BC}^2 + \overline{AC}^2$. Factor \overline{AB} so that $\overline{AB}(\overline{BD} + \overline{AD}) = \overline{AB}^2$ by CN 4. So $\overline{BC}^2 + \overline{AC}^2 = \overline{AB}^2$ by CN 1.

周髀算經 or Zhoubi Suanjing

Use the labels and the puzzle... large square has side c small square has side

周髀算經 or Zhoubi Suanjing

Use the labels and the puzzle...

large square has side c

small square has side a - b

area of the large square = area small square + 4 area of triangle

$$c^2=(a-b)^2+4(\frac{ab}{2})$$

Why is the Pythagorean Theorem True?

周髀算經 or Zhoubi Suanjing

Use the labels and the puzzle...

large square has side c

small square has side a - b

area of the large square = area small square + 4 area of triangle

$$c^2 = (a - b)^2 + 4(\frac{ab}{2})$$

$$c^2 = a^2 - 2ab + b^2 + 2ab$$

$$c^2 = a^2 + b^2$$

周髀算經 or Zhoubi Suanjing

Use the labels and the puzzle...

large square has side c

small square has side a - b

area of the large square = area small square + 4 area of triangle

$$c^2 = (a - b)^2 + 4(\frac{ab}{2})$$

$$c^2 = a^2 - 2ab + b^2 + 2ab$$

$$c^2=a^2+b^2$$

Proof: Where should we start? Why do we have squares?

周髀算經 or Zhoubi Suanjing

Given a non-isosceles $\[\]$ with hypotenuse $\[\]$ opposite a right angle, long base side $\[\]$ and short side $\[\]$ to show it satisfies the Pythagorean theorem, first translate and rotate to form 3 congruent copies as in the picture. To show the inside space is a square, notice each 90° angle in a triangle on side $\[\]$ is also on a side $\[\]$ and adjacent triangle that is broken up by a side of the small square so by I-13 it has 90° angles

周髀算經 or Zhoubi Suanjing

Given a non-isosceles $\[Pi]$ with hypotenuse $\[Pi]$ opposite a right angle, long base side $\[Pi]$ and short side $\[Pi]$, to show it satisfies the Pythagorean theorem, first translate and rotate to form 3 congruent copies as in the picture. To show the inside space is a square, notice each $\[Pi]$ 0° angle in a triangle on side $\[Pi]$ 1 is also on a side $\[Pi]$ 2 of an adjacent triangle that is broken up by a side of the small square so by I-13 it has $\[Pi]$ 0° angles and its sides are $\[Pi]$ 2. To show the large figure is a square, it has sides $\[Pi]$ 2 and each angle is made up of the sum of angles opposite $\[Pi]$ 3 and $\[Pi]$ 5 in adjacent triangles.

周髀算經 or Zhoubi Suanjing

Given a non-isosceles ∇ with hypotenuse c opposite a right angle, long base side a and short side b, to show it satisfies the Pythagorean theorem, first translate and rotate to form 3 congruent copies as in the picture. To show the inside space is a square, notice each 90° angle in a triangle on side b is also on a side a of an adjacent triangle that is broken up by a side of the small square so by I-13 it has 90° angles and its sides are a - b, so it is a square by Def 22. To show the large figure is a square, it has sides *c* and each angle is made up of the sum of angles opposite a and b in adjacent triangles. By I-32, CN 1 and 3, these sum to 2 right angles – angle opposite $c = 180^{\circ} - 90^{\circ} = 90^{\circ}$ so the outer space is a square too...

Why is the Pythagorean Theorem True?

https://www.youtube.com/watch?v=CAkMUdeB06o

Translation of Euclid's Elements

To prove:
$$a^2 + b^2 = c^2$$

To prove:
$$a^2 + b^2 = c^2$$

In fact,
$$a^2 = ce$$

and $b^2 = cd$

$$area(\triangle DAB) = \frac{1}{2}b^2$$

Similarly,

$$area(\triangle CAJ) = \frac{1}{2}cd$$

$$\therefore$$
 b² = cd

In the same way,

$$a^2 = 2 \operatorname{area}(\triangle GAB)$$

= 2 area(\triangle CHB)

Therefore:

$$b^2 + a^2 = cd + ce$$

= c (d+e)
= c^2

QED!

$$AB^2 + AC^2 \approx 51.454^2 + 81.390^2 > 84.730^2 = BC^2$$
 $c_{ ext{Euclidean}}$ is too long for sphere: $a^2 + b^2 = c_{ ext{Euclidean}}^2 > c_{ ext{sphere}}^2$

 What are aspects you like about this video from mathmaticsonline?

- What are aspects you like about this video from mathmaticsonline?
- axiom 2 versus
 CN 2 (equals are added to equals ⇒ wholes are equal)
- parallelogram and square have equal areas they are not congruent as figures

Elisha Scott Loomis
367 proofs of the Pythagorean theorem

Where Else is Pythagorean Theorem Historically?

cuneiform

Baudhayana sutras (Vedic Sanskrit texts)

दीर्घचतुरश्रस्याक्ष्णया रज्जु: पार्श्वमानी तिर्यग् मानी च यत् पृथग् भूते कुरूतस्तदुभयं करोति ॥

A rope stretched along the length of the diagonal produces an area

which the vertical and horizontal sides make together.

Egypt 3, 4, 5 right triangles

Extensions of the Pythagorean Theorem

- non-Euclidean geometry
- squares to other regular polygons on the right triangle
- squares to other algebraic powers

Futurama TM and © Twentieth Century Fox Film Corporation.

This educational content is not specifically authorized by Twentieth Century Fox.

