
V-E+F Experiment
Draw a few dots (vertices)
Connect the dots with lines, subject to the following
rules:

lines may not cross each other as they move from dot to
dot
every dot must be connected to every other dot through
a sequence of lines
every region must topologically be a disk with no holes

Compute
Vertices (V) - Edges (E) + Faces Separated by Edges (F)
[Do not forget to count the outside as a region for F too.]
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Polyhedra V-E+F and Symmetries

What is Vertices (V) - Edges (E) + Faces (F) for the
regular polyhedra?
Where is the symmetry of a 2π

3 rotation for each
polyhedra? Describe the axis of rotation in each case.

http://www.princeton.edu/pr/pictures/l-r/packingproblem/pu-platonic-solids.jpg
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Regular Polyhedra Symmetries
Where is the symmetry of a 2π

3 rotation for each
polyhedra? Describe the axis of rotation in each case.

http://www.princeton.edu/pr/pictures/l-r/packingproblem/pu-platonic-solids.jpg

Image 1 and 3 from https://www.geogebra.org/m/PA7zzxHa, https://www.geogebra.org/m/PgyzAXRP
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Platonic Solids

There are only five regular polyhedra, but why?

So their combinations with themselves and with each other
give rise to endless complexities, which anyone who is to give
a likely account of reality must survey. [Plato, The Timaeus]

http://www.princeton.edu/pr/pictures/l-r/packingproblem/pu-platonic-solids.jpg
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Exactly 5 Regular Euclidean Polyhedra Part 1
Given a regular polyhedra with n total polygonal faces and
p k-sided faces touching at a vertex, we’ll show it must be
a Platonic solid. Let E be the total edges and V the total vertices.

Ex: Cube: 3 squares at a vertex so p = 3 and k = 4

E =
nk
2

V =
nk
p

2 = V − E + F =
nk
p

− nk
2

+ n = n(
k
p
− k

2
+ 1)

n>0 and n ( k
p − k

2 +1) = 2 >0, so

k
p
− k

2
+ 1 > 0

k
p
+ 1 >

k
2

multiply by
2
k

2
p
+

2
k
> 1
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Exactly 5 Regular Euclidean Polyhedra Part 2
p k-sided faces touch at a vertex

2
p
+

2
k
> 1

Euclidean polyhedra have p ≥ 3
and regular planar polygons have k ≥ 3
p = 3 and k = 3

tetrahedron
p = 3 and k = 4 cube
p = 3 and k = 5 dodecahedron
p = 3 and k ≥ 6 doesn’t satisfy inequality
p = 4 and k = 3 octahedron
p = 5 and k = 3 icosahedron
p ≥ 6 and k = 3 doesn’t satisfy inequality
These are the only possibilities.

http://www.princeton.edu/pr/pictures/l-r/packingproblem/pu-platonic-solids.jpg
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Spherical Icosahedron

CC-BY-SA-3.0 Hellbus

William O. Gustafson / Uwe Meffert
23 563 902 142 421 896 679 424 000 combinations
V = 12,E = 30,F = 20
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Infinitely Many Regular Spherical Polyhedra
2
p
+

2
k
> 1

p k-sided faces touch at a vertex
Euclidean polyhedra p ≥ 3 and regular planar polygon k ≥ 3
k=3 and p=3 tetrahedron
k=3 and p=4 octahedron
k=3 and p=5 icosahedron
k=4 and p=3 cube
k=5 and p=3 dodecahedron

Could k be 2 on a sphere?

Hexagonal hosohedron
Pbroks13, Tomruen CC BY-SA 3.0
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Infinitely Many Regular Spherical Polyhedra

2
p
+

2
k
> 1

p k-sided faces touch at a vertex
Could p be 2 on a sphere?

Pentagonal dihedron
Tomruen CC BY-SA 4.0
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p k-sided faces touch at a vertex
Could p be 2 on a sphere?
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Measuring Curvature at a Vertex
Structure of Viruses Approximations Shape of Universe

1. Russell Knightley. http://www.rkm.com.au/VIRUS/HIV, 2. K. Weiss & L. De Floriani: Isodiamond Hierarchies,
IEEE Transactions on Vis & Comp Graphics http://kennyweiss.com/ 3. Paul Nylander: life from the inside

Angle defect at a vertex = 360◦− sum angles at a vertex

Dr. Sarah Polyhedra
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Measuring Curvature at a Vertex

Structure of Viruses Approximations Shape of Universe

1. Russell Knightley. http://www.rkm.com.au/VIRUS/HIV, 2. K. Weiss & L. De Floriani: Isodiamond Hierarchies, IEEE

Transactions on Vis & Comp Graphics http://kennyweiss.com/ 3. Paul Nylander: life from the inside

Angle defect at a vertex = 360◦− sum angles at a vertex
Polyhedron Angle Defect V Total Angle Defect
Dodecahedron 36◦ 20 20 × 36◦ = 720◦

flat soccer ball 12◦ 60 12 × 60◦ = 720◦

(truncated icosahedron)

Dr. Sarah Polyhedra
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Why is the Total Angle Defect 720◦?

angle defect at a vertex = 2π− sum angles at a vertex

total angle defect =∑
V

angle defect at a vertex=

2πV− sum of all the angles

sum of angles in 1 face = π(# sides in face −2) = π(# sides)−2π

sum of all the angles=
∑
F

sum in each face =π (all sides) −2πF .

Recall that all the sides double counts along the edges E so
sum of all the angles= 2πE − 2πF

total angle defect = 2πV − (2πE − 2πF ) = 2π(V − E + F )
geometric combinatorics
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