Euclidean AA, SS, SA, ASA, AAS, HL

Work (no internet searches) to look for counterexamples, if they exist. You may use IGS. Fill with "yes" or a counterexample.

	congruence?	if not then similarity?
AA		
AAA		
SS		
SA		
ASA		
AAS		
HL		

$\mathrm{A}=$ angle, $\mathrm{S}=$ side, $\mathrm{H}=$ hypotenuse, $\mathrm{L}=$ leg of a right triangle

	congruence?	if not then similarity?
AA		
AAA		
SS		
SA		
SAS		
SSS		
SSA		
ASA		
AAS		
HL		

Propositions, Assumptions and Applications

Proof Considerations: I can write rigorous proofs in geometry, identify underlying assumptions, and understand limitations and applications.

Applications of Congruence and Similarity

- every isometry in the plane is a product of at most three reflections (via SSS)
- two isometries which agree on three non-collinear points are the same on all points (via SSS)
- For triangles, SSS and more are lists of possible design choices in Euclidean geometry of the plane.
- More generally, in other geometries, or for more points, like for CAD or CAGD programming, when are design choices complete or when do we need more choices?

Burden of Proof: Is the defendant a square?

Euclidean Quadrilateral Design Choices

Investigate similarity in quadrilaterals (no internet searches). Look for counterexamples of quadrilaterals and write them on the board as you find them (e.g. SSSS with a counterexample) You may use IGS. Then consider what is the smallest amount of information you need to determine that quadrilaterals are similar?

Euclidean Quadrilateral Design Choices

Investigate similarity in quadrilaterals (no internet searches). Look for counterexamples of quadrilaterals and write them on the board as you find them (e.g. SSSS with a counterexample) You may use IGS. Then consider what is the smallest amount of information you need to determine that quadrilaterals are similar?
https://www.geogebra.org/m/zg3nzsRa
https://www.geogebra.org/m/Q8EYTUK2
https://www.geogebra.org/m/uKnpbCCc
SSAA and SSASA?

SSAAA Similarity for a Euclidean Quadrilateral?

Assume two quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $\frac{\overline{A B}}{\overline{A^{\prime} B^{\prime}}} \cong \frac{\overline{B C}}{\overline{B^{\prime} C^{\prime}}}$ (i.e. SS similarity) and three pairs of the angles are congruent.

SSAAA Similarity for a Euclidean Quadrilateral?

Assume two quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $\frac{\overline{A B}}{\overline{A^{\prime} B^{\prime}}} \cong \frac{\overline{B C}}{\overline{B^{\prime} C^{\prime}}}$ (i.e. SS similarity) and three pairs of the angles are congruent.

- Must $\angle A B C \cong \angle A^{\prime} B^{\prime} C^{\prime}$? Why or why not?

SSAAA Similarity for a Euclidean Quadrilateral?

Assume two quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $\frac{\overline{A B}}{\overline{A^{\prime} B^{\prime}}} \cong \frac{\overline{B C}}{\overline{B^{\prime} C^{\prime}}}$ (i.e. SS similarity) and three pairs of the angles are congruent.

- Must $\angle A B C \cong \angle A^{\prime} B^{\prime} C^{\prime}$? Why or why not?
- What, if anything can we say about $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, and why?

SSAAA Similarity for a Euclidean Quadrilateral?

Assume two quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $\frac{A B}{A^{\prime} B^{\prime}} \cong \frac{B C}{B^{\prime} C^{\prime}}$ (i.e. SS similarity) and three pairs of the angles are congruent.

- Must $\angle A B C \cong \angle A^{\prime} B^{\prime} C^{\prime}$? Why or why not?
- What, if anything can we say about $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, and why?
- What, if anything can we say about $\angle C A D \cong \angle C^{\prime} A^{\prime} D^{\prime}$, and why?
- How about $\triangle A C D$ and $\triangle A^{\prime} C^{\prime} D^{\prime}$, and why?
- How about $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, and why?

SSAAA Similarity for a Euclidean Quadrilateral?

Assume two quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $\frac{\overline{A B}}{A^{\prime} B^{\prime}} \cong \frac{\overline{B C}}{B^{\prime} C^{\prime}}$ (i.e. SS similarity) and three pairs of the angles are congruent.

- Must $\angle A B C \cong \angle A^{\prime} B^{\prime} C^{\prime}$? Why or why not?
- What, if anything can we say about $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, and why?
- What, if anything can we say about $\angle C A D \cong \angle C^{\prime} A^{\prime} D^{\prime}$, and why?
- How about $\triangle A C D$ and $\triangle A^{\prime} C^{\prime} D^{\prime}$, and why?
- How about $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, and why?

What about SS congruence + AAA?

SSAAA Similarity for a Euclidean Quadrilateral?

Assume two quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ satisfy $\frac{A B}{A^{\prime} B^{\prime}} \cong \frac{B C}{B^{\prime} C^{\prime}}$ (i.e. SS similarity) and three pairs of the angles are congruent.

- Must $\angle A B C \cong \angle A^{\prime} B^{\prime} C^{\prime}$? Why or why not?
- What, if anything can we say about $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, and why?
- What, if anything can we say about $\angle C A D \cong \angle C^{\prime} A^{\prime} D^{\prime}$, and why?
- How about $\triangle A C D$ and $\triangle A^{\prime} C^{\prime} D^{\prime}$, and why?
- How about $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, and why?

What about SS congruence + AAA?
What about SAAAA and SAASA? SSSSA?

Project 2: Euclidean \& Spherical-Course Topics

 (Geometric Perspectives) I can compare and contrast multiple geometric perspectives...- individual project
- review Euclidean content
- importance of topic
- diverse spherical perspectives
- references

