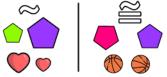
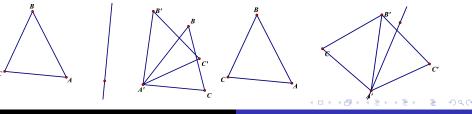
Applications of Congruence and Similarity

- For triangles, SSS and more are lists of possible design choices in Euclidean geometry of the plane.
- Two isometries which agree on three non-collinear points are the same on all points (via SSS)
- Every isometry in the plane is a product of at most three reflections (via SSS)
- More generally, in other geometries, or for more points, like for CAD or CAGD programming, when are design choices complete or when do we need more choices?
- Many additional real-life applications

SIMILAR VS CONGRUENT



 $SSS \implies Product of at Most 3 Reflections$ Let *i* be an isometry and look at 3 non-collinear points in the plane A, B, C. Define i(A) = A', i(B) = B', i(C) = C'. We'll show we need at most three reflections to represent *i*. If $A \neq A'$ then reflect in the perpendicular bisector of $\overline{AA'}$ to send A to A'. Next, after the first reflection, if $B \neq B'$ then reflect in the perpendicular bisector of $\overline{BB'}$ to send B to B'. Since an isometry i is distance preserving by definition, then $\overline{AB} = \overline{A'B'}$, $\overline{BC} = \overline{B'C'}$ and $\overline{CA} = \overline{C'A'}$, so the two triangles $\triangle ABC$ and $\triangle A'B'C'$ satisfy SSS and hence must be congruent. Thus A must still coincide with A' after the second reflection. If, after the second reflection, $C \neq C'$ reflect across $\overline{A'B'}$. Two isometries which agree on three non-collinear points are the same on all points, so *i* is the product of at most 3 reflections.



Euclidean Quadrilateral Design Choices

Consider what is the smallest amount of information we need to determine that quadrilaterals are congruent or similar?

(本語) (本語) (二語)

Euclidean Quadrilateral Design Choices

Consider what is the smallest amount of information we need to determine that quadrilaterals are congruent or similar?

SSSS in quadrilaterals

https://www.geogebra.org/m/kzz5dgsa

AA triangles

https://www.geogebra.org/m/nhmyevwn

• AAA and AAAA quadrilaterals

https://www.geogebra.org/m/bgejumzb

同 ト イヨ ト イヨ ト ヨ うくや

Euclidean Quadrilateral Design Choices

Consider what is the smallest amount of information we need to determine that quadrilaterals are congruent or similar?

SSSS in quadrilaterals

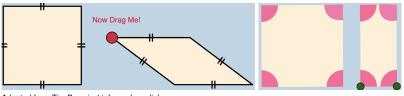
https://www.geogebra.org/m/kzz5dgsa

AA triangles

https://www.geogebra.org/m/nhmyevwn

• AAA and AAAA quadrilaterals

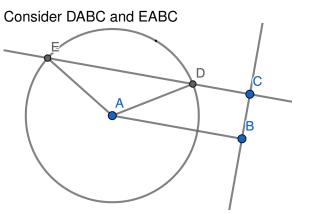
https://www.geogebra.org/m/bgejumzb



Adapted from Tim Brzezinski, from above links

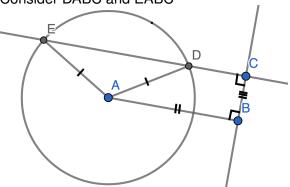
프 에 에 프 어 - -

SSASA Similarity for a Euclidean Quadrilateral?



코 > 코

SSASA Similarity for a Euclidean Quadrilateral? Consider DABC and EABC



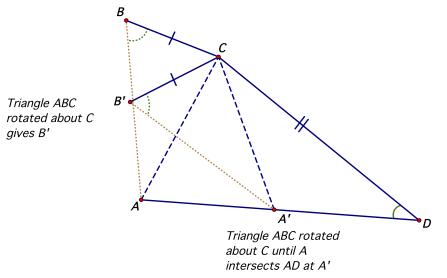
SSASA is not a similarity theorem implications: SASA, SSSA, SSAA, SSAS reverse direction from C: ASASS implications: ASAS, ASSS, SASS, AASS

ASSA Similarity for a Euclidean Quadrilateral?

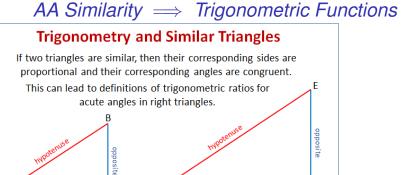
Dr. Sarah Math 3610: Introduction to Geometry

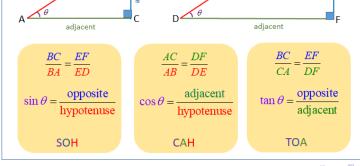
* 国家 * 国家

ASSA Similarity for a Euclidean Quadrilateral?



ASSA is not a similarity theorem

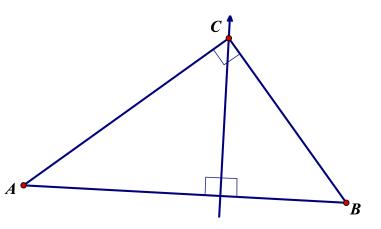




https://www.onlinemathlearning.com/similarity-trig-ratios-hsg-srt6.html 🗇

3

Which Triangles are Similar?



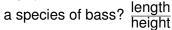
▶ ▲ 臣 ▶

æ

AA Similarity \implies Pythagorean Theorem Given a right $\triangle ABC$ with hypotenuse \overline{AB} and shortest side \overline{BC} , construct a perpendicular from \overline{AB} through C by I-12 and label the intersection as D. Now $\triangle ABC \sim \triangle CBD$ by AA as all right angles are congruent by Postulate 4, $\angle ACB \cong CDB$, and $\angle CBA \cong CBD$ by CN 4. By similarity of $\triangle ABC$ and $\triangle CBD$, since the ratio of the hypotenuse to the shorter base side must be the same, $\frac{AB}{BC} = \frac{BC}{BD}$. Cross multiply to see $\overline{AB} \ \overline{BD} = \overline{BC}^2$. Also, $\triangle ABC \sim \triangle ACD$ by AA as $\angle ACB \cong CDA$ by Postulate 4 and $\angle CAB \cong CAD$ by CN 4. $\triangle ABC \sim \triangle ACD$ so the ratio of the hypotenuse to the longer base side must be the same, $\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{AC}}{\overline{AD}}$. Cross multiply: $\overline{AB} \overline{AD} = \overline{AC}^2$. By CN 2, $\overline{AB} \ \overline{BD} + \overline{AB} \ \overline{AD} = \overline{BC}^2 + \overline{AC}^2$. Factor \overline{AB} so that $\overline{AB}(\overline{BD} + \overline{AD}) = \overline{AB}^2$ by CN 4. So $\overline{BC}^2 + \overline{AC}^2 = \overline{AB}^2$ by CN 1. D

Geometric Modeling Using Similarity geometric similarity is common in deriving and testing physical and biological relationships

Image 1 public domain, 2.https://www.atlantisgozo.com/bothus-podas-wide-eyed-flounder/



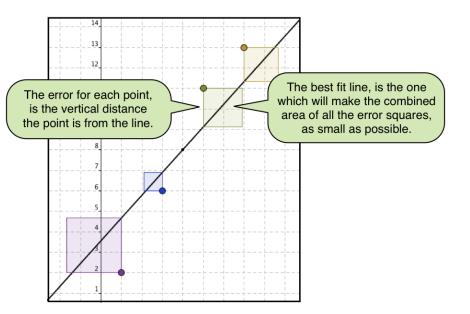
humans? $\frac{\text{armspan}}{\text{height}}$ i.e. $I \propto h$.

volume?

Geometric Modeling Using Similarity geometric similarity is common in deriving and testing physical and biological relationships

Image 1 public domain, 2.https://www.atlantisgozo.com/bothus-podas-wide-eyed-flounder/

- a species of bass? length height
 - $\frac{\text{ength}}{\text{leight}} \quad \text{humans?} \ \frac{\text{armspan}}{\text{height}} \text{ i.e. } I \propto h.$
- volume? $v \propto l^3$ surface area? $a \propto l^2$
- weight = volume \times average weight density,
- so if that density is constant, then $w \propto l^3$



http://math.maine121.org/welcome/chapter-5/

프 에 에 프 어

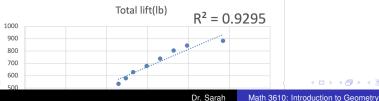
э

Geometric Modeling Using Similarity

winners of the 1976 Olympics by their weight lifting class

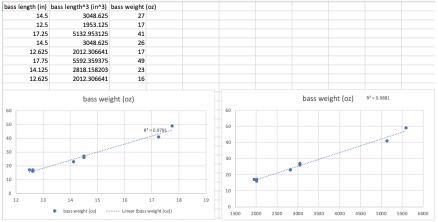
- $\frac{\text{lift}}{\text{weight}}$ = constant slope, i.e. lift \propto weight?
- *R*² measures the *y*-values distances: sum of squares as variation in the dependent variable explained by linearity. the closer to 100% the stronger the relationship

Class	Max weight(lb)	Total lift(lb)	
Flyweight	114.5	534.6	
Bantamweight	123.5	578.7	
Featherweight	132.5	628.3	
Leightweight	149	677.9	
Middleweight	165.5	738.5	
Ligh heavyweight	182	804.7	
Middle heavyweight	198.5	843.3	
Heavyweight	242.5	881.8	



Geometric Modeling Using Similarity

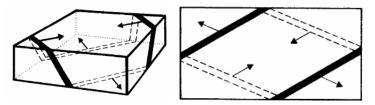
basssimilarity.xlsx bass length (in) and bass weight (oz)



bass length $R^2 = .9791$ bass length³ $R^2 = .9881$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Sliding a Ribbon Off a Box Using Similarity



The Geometric Viewpoint: a Survey of Geometries by Thomas Sibley

Dr. Sarah Math 3610: Introduction to Geometry

프 🕨 🗆 프