ACTIVITY FIVE: The Pythagorean Identity in Trigonometry

Let ABC be a triangle with right angle at C . Its legs have lengths a and b and the length of the hypotenuse is c.

Apply the scaling factor $\frac{1}{c}$ to create a similar triangle $A^{\prime} B^{\prime} C^{\prime}$ with legs $\frac{a}{c}$ and $\frac{b}{c}$ and hypotenuse 1 .

When the Pythagorean Theorem is used on the new triangle, we have

$$
\frac{a}{c}^{2}+\frac{b}{c}^{2}=1^{2}=1
$$

In right triangle trigonometry, we define the sine and cosine functions as follows. Consider an acute angle θ in triangle ABC . The sine of θ is the ratio created by taking the length of the opposite side and dividing by the length of the hypotenuse. In our triangle, I've arbitrarily placed θ at vertex A, and so

$$
\sin (\theta)=\frac{a}{c}
$$

Because ABC and $A^{\prime} B^{\prime} C^{\prime}$ are similar, the corresponding angles are congruent. Thus, we may also write:

$$
\sin (\theta)=\frac{\frac{a}{c}}{1}=\frac{a}{c}
$$

Note that the sine is dependent only on the angle and not the size of the triangle.
Similarly, the cosine of θ is the ratio created by taking the length of the adjacent side and dividing by the length of the hypotenuse: $\cos (\theta)=\frac{b}{c}$. (To confirm the independence of the angle, consider $A^{\prime} B^{\prime} C^{\prime}$ where $\cos (\theta)=\frac{\frac{b}{c}}{1}=\frac{b}{c}$.)

Now let's go back to $\frac{a^{2}}{c}+\frac{b}{c}^{2}=1$ and "substitute equals for equals" to arrive at the Pythagorean Identity for Trigonometry.

$$
(\sin (\theta))^{2}+(\cos (\theta))^{2}=1
$$

