Angle Sum in Various Geometries

- Lay out a triangle with masking tape
- Pick a vertex to begin your triangle walk. Note the vertex and which way you are facing.

Walking a Euclidean Angle Sum

- Start walking along your triangle, keeping the center of your body on the boundary of the triangle.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum

- Sweep out the last interior angle to finish your angle sum walk.
- The change in direction in your body from start to finish is the sum of the angles in this triangle.

Folding an Angle Sum Extrinsically

- Rip a triangle from paper.
- Fold one angle to bring it down to the base by using a fold parallel to the base.
- Fold the other angles in

Folding an Angle Sum Extrinsically

- Notice the angles fit to take up the entire space along the base and this gives us the angle sum.

Sum of the Angles in a Triangle on a Sphere

Sum of the Angles in a Triangle on a Sphere

area of lune of angle a radians=

Sum of the Angles in a Triangle on a Sphere

area of lune of angle a radians $=\frac{a}{2 \pi} \times$ surface area of sphere

Sum of the Angles in a Triangle on a Sphere

area of lune of angle a radians $=\frac{a}{2 \pi} \times$ surface area of sphere

$$
=\frac{a}{2 \pi} 4 \pi r^{2}=2 a r^{2}
$$

Sum of the Angles in a Triangle on a Sphere

area of lune of angle a radians $=\frac{a}{2 \pi} \times$ surface area of sphere

$$
=\frac{a}{2 \pi} 4 \pi r^{2}=2 a r^{2}
$$

Sum of the Angles in a Triangle on a Sphere

area of lune of angle a radians $=\frac{a}{2 \pi} \times$ surface area of sphere

$$
=\frac{a}{2 \pi} 4 \pi r^{2}=2 a r^{2}
$$

Sum of the Angles in a Triangle on a Sphere

area of lune of angle a radians $=\frac{a}{2 \pi} \times$ surface area of sphere

$$
=\frac{a}{2 \pi} 4 \pi r^{2}=2 a r^{2}
$$

Sum of the Angles in a Triangle on a Sphere

area of lune of angle a radians $=\frac{a}{2 \pi} \times$ surface area of sphere

$$
=\frac{2 \pi}{2 \pi} 4 \pi r^{2}=2 a r^{2}
$$

Sum of the Angles in a Triangle on a Sphere

area of lune of angle a radians $=\frac{a}{2 \pi} \times$ surface area of sphere

$$
=\frac{a \pi}{2 \pi} 4 \pi r^{2}=2 a r^{2}
$$

$T+A^{\prime}=2 a r^{2}$

$T+B^{\prime}=2 b r^{2}$

$$
T+C^{\prime}=2 c r^{2}
$$

Sum of the Angles in a Triangle on a Sphere

area of lune of angle a radians $=\frac{a}{2 \pi} \times$ surface area of sphere

$$
=\frac{a}{2 \pi} 4 \pi r^{2}=2 a r^{2}
$$

$T+A^{\prime}=2 a r^{2}$

$T+B^{\prime}=2 b r^{2}$

$T+C^{\prime}=2 c r^{2}$
$3 T+A^{\prime}+B^{\prime}+C^{\prime}=2 a r^{2}+2 b r^{2}+2 c r^{2}$

Sum of the Angles in a Triangle on a Sphere

equation 1: $3 T+A^{\prime}+B^{\prime}+C^{\prime}=2 a r^{2}+2 b r^{2}+2 c r^{2}$

Sum of the Angles in a Triangle on a Sphere

equation 1: $3 T+A^{\prime}+B^{\prime}+C^{\prime}=2 a r^{2}+2 b r^{2}+2 c r^{2}$

Sum of the Angles in a Triangle on a Sphere

 equation 1: $3 T+A^{\prime}+B^{\prime}+C^{\prime}=2 a r^{2}+2 b r^{2}+2 c r^{2}$
equation 2: $T+A^{\prime}+B^{\prime}+C^{\prime}=$ hemisphere

Sum of the Angles in a Triangle on a Sphere

equation 1: $3 T+A^{\prime}+B^{\prime}+C^{\prime}=2 a r^{2}+2 b r^{2}+2 c r^{2}$

equation 2: $T+A^{\prime}+B^{\prime}+C^{\prime}=$ hemisphere $=\frac{4 \pi r^{2}}{2}=2 \pi r^{2}$

Sum of the Angles in a Triangle on a Sphere

 equation 1: $3 T+A^{\prime}+B^{\prime}+C^{\prime}=2 a r^{2}+2 b r^{2}+2 c r^{2}$
equation 2: $T+A^{\prime}+B^{\prime}+C^{\prime}=$ hemisphere $=\frac{4 \pi r^{2}}{2}=2 \pi r^{2}$ equation 1 - equation $2: 2 T=$

Sum of the Angles in a Triangle on a Sphere

 equation 1: $3 T+A^{\prime}+B^{\prime}+C^{\prime}=2 a r^{2}+2 b r^{2}+2 c r^{2}$
equation 2: $T+A^{\prime}+B^{\prime}+C^{\prime}=$ hemisphere $=\frac{4 \pi r^{2}}{2}=2 \pi r^{2}$ equation 1 - equation $2: 2 T=2 r^{2}(a+b+c-\pi)$ area of the triangle $=r^{2}$ (sum of the angles $-\pi$)

Detecting the Sum of the Angles in an Earth Triangle

CC-BY-SA-3.0, by Lars H. Rohwedder, Sarregouset selected a subset of the image

$$
\text { sum of the angles }-\pi=\frac{\text { area of the triangle }}{r^{2}}
$$

Detecting the Sum of the Angles in an Earth Triangle

CC-BY-SA-3.0, by Lars H. Rohwedder, Sarregouset selected a subset of the image

$$
\text { sum of the angles }-\pi=\frac{\text { area of the triangle }}{r^{2}}
$$

$$
\frac{1}{3959^{2}} \approx 6.38 \times 10^{-8}
$$

Detecting the Sum of the Angles in an Earth Triangle

CC-BY-SA-3.0, by Lars H. Rohwedder, Sarregouset selected a subset of the image

$$
\text { sum of the angles }-\pi=\frac{\text { area of the triangle }}{r^{2}}
$$

$$
\frac{1}{3959^{2}} \approx 6.38 \times 10^{-8} \quad \frac{82277}{3959^{2}} \approx 0.005
$$

Detecting the Sum of the Angles in an Earth Triangle

CC-BY-SA-3.0, by Lars H. Rohwedder, Sarregouset selected a subset of the image

$$
\text { sum of the angles }-\pi=\frac{\text { area of the triangle }}{r^{2}}
$$

$\frac{82277}{3959^{2}} \approx 0.005$
196,000,000/8 3959^{2}

Euclidean proof of I-32.
Discuss what goes wrong with the proof of I-32 on the sphere.
Escher's representation of hyperbolic geometry
http://cs.appstate.edu/~sjg/class/1010/wc/
geom/Escherworksheet.pdf

http://www.malinc.se/noneuclidean/images/triangleSum.svg

