What are various ideas that relate to parallel?

Write down as many definitions, ideas and concepts that relate to the meaning or visualization of parallel.

Parallel lines have so much in common

it's a shame they'll
never meet
Asap SClIEN

Parallels in Various Geometries

Escher's representation of hyperbolic geometry

Adapted from Circle Limit 4: Heaven and Hell by M.C. Escher, 1960

Euclid's Elements 5th Postulate

If a straight line falling on two straight lines make the interior angles on the same side less than two right angles, if produced indefinitely, meet on that side...

Guess the punchline!

Negation of Euclid's Elements 5th Postulate?

If a straight line falling on two straight lines make the interior angles on the same side less than two right angles, if produced indefinitely, meet on that side...

Guess the punchline!

Consistency \# Uniqueness

Wile E. Coyote

Axiom 1) Each square is a number or a mine.
Axiom 2) A numbered square represents the number of neighboring mines in the blocks immediately above, below, left, right, or diagonally touching (or a subset of those if a block is on a boundary)

How many consistent games can you find that satisfy the initial board plus the axioms?

Euclid's 5th Postulate on Plane and Sphere

If a straight line falling on two straight lines make the interior angles on the same side less than two right angles, if produced indefinitely, meet on that side...

Guess the punchline!

Playfair's on Plane and Sphere

Given a line and a point off that line there is exactly 1 parallel to the line through the point.

Existence Portion of Playfair's Postulate l-31

 - Create a parallel-what Euclidean propositions?

Let m be a line and P a point off it. To construct a parallel, first construct the perpendicular to m through P by l-12.

Existence Portion of Playfair's Postulate I-31

- Create a parallel-what Euclidean propositions?

Let m be a line and P a point off it. To construct a parallel, first construct the perpendicular to m through P by l-12. Next apply $\mathrm{I}-11$ to construct the perpendicular to the perpendicular through P.

Existence Portion of Playfair's Postulate I-31

- Create a parallel-what Euclidean propositions?

Let m be a line and P a point off it. To construct a parallel, first construct the perpendicular to m through P by l-12. Next apply $\mathrm{I}-11$ to construct the perpendicular to the perpendicular through P. If, for contradiction, they intersect, then label the intersection as I and the other point of the resulting triangle A. We know $\varangle A P I$ and $\varangle P A I$ are right angles since we constructed them via perpendiculars. Now the exterior angle to the triangle across m at A must also be right by $\mathrm{I}-13$. But

Existence Portion of Playfair's Postulate I-31

 - Create a parallel-what Euclidean propositions?

Let m be a line and P a point off it. To construct a parallel, first construct the perpendicular to m through P by l-12. Next apply $\mathrm{I}-11$ to construct the perpendicular to the perpendicular through P. If, for contradiction, they intersect, then label the intersection as I and the other point of the resulting triangle A. We know $\varangle A P I$ and $\varangle P A I$ are right angles since we constructed them via perpendiculars. Now the exterior angle to the triangle across m at A must also be right by $\mathrm{l}-13$. But now the exterior angle is congruent to $\varangle A P I$, a remote angle, and it should be greater than it by $\mathrm{I}-16$. Thus / cannot exist.

I-16 on the Sphere

Why is the perpendicular to the perpendicular parallel in Euclidean geometry but not in spherical geometry?

I-16 An exterior angle of a triangle is greater than either remote interior angle.

Dr. Sarah

Proof of I-16 on Plane \& What Happens on Sphere

 Let D be the midpoint of $\overline{B C}$ in triangle $A B C$, by $\mathrm{l}-10$. Construct and extend $\overline{A D}$ by Postulates $1 \& 2$ and use $\mathrm{l}-2$ to find E on it so $\overline{A D}=\overline{D E}$. Now $\varangle A D C+\varangle C D E$ is 2 right angles and so is $\varangle B D E+\varangle C D E$ by $\mathrm{l}-13$ so the vertical angles are equal by CN3. We have SAS for triangles $A C D$ and $D B E$ so by I-4 $\varangle A C D \cong \varangle D B E$. In addition, the exterior angle at B strictly contains $\varangle D B E$ so by CN5 is greater than it.

Proof of I-16 on Plane \& What Happens on Sphere

 Let D be the midpoint of $\overline{B C}$ in triangle $A B C$, by $\mathrm{l}-10$. Construct and extend $\overline{A D}$ by Postulates $1 \& 2$ and use $\mathrm{l}-2$ to find E on it so $\overline{A D}=\overline{D E}$. Now $\varangle A D C+\varangle C D E$ is 2 right angles and so is $\varangle B D E+\varangle C D E$ by $\mathrm{l}-13$ so the vertical angles are equal by CN3. We have SAS for triangles $A C D$ and $D B E$ so by l-4 $\varangle A C D \cong \varangle D B E$. In addition, the exterior angle at B strictly contains $\varangle D B E$ so by CN5 is greater than it.

Dr. Sarah

Existence Portion of Playfair's I-31

- Why is the perpendicular to the perpendicular parallel in Euclidean geometry but not in spherical geometry?
- Euclid's 5th Postulate is vacuously true on the sphere so unlike what is listed on the web and in some books, the statements are different. We will prove: Euclid's 5th Postulate plus Euclid's other axioms before I-31 prove Playfair's (underlying assumptions like for SAS!)
- We will further investigate parallels in hyperbolic geometry.

Guess the punchline!

