Equidistant

- Prove that parallel lines imply that they are equidistant in Euclidean geometry.
- What goes wrong on the sphere and in hyperbolic geometry?

Guess the punchline!

Parallel Lines are Equidistant

Let a and b be parallel lines. To show they are equidistant, let A and A^{\prime} be points on a. Construct the perpendiculars to b through A and A^{\prime} by

Parallel Lines are Equidistant

Let a and b be parallel lines. To show they are equidistant, let A and A^{\prime} be points on a. Construct the perpendiculars to b through A and A^{\prime} by $\mathrm{l}-12$ and label the intersections as B and B^{\prime}.

Parallel Lines are Equidistant

Let a and b be parallel lines. To show they are equidistant, let A and A^{\prime} be points on a. Construct the perpendiculars to b through A and A^{\prime} by $\mathrm{l}-12$ and label the intersections as B and B^{\prime}. Construct $\overline{A B^{\prime}}$ by

Parallel Lines are Equidistant

Let a and b be parallel lines. To show they are equidistant, let A and A^{\prime} be points on a. Construct the perpendiculars to b through A and A^{\prime} by $\mathrm{l}-12$ and label the intersections as B and B^{\prime}. Construct $\overline{A B^{\prime}}$ by Postulate 1 . Now $\varangle A^{\prime} A B^{\prime} \cong \varangle A B^{\prime} B$ by

Parallel Lines are Equidistant

Let a and b be parallel lines. To show they are equidistant, let A and A^{\prime} be points on a. Construct the perpendiculars to b through A and A^{\prime} by l-12 and label the intersections as B and B^{\prime}. Construct $\overline{A B^{\prime}}$ by Postulate 1 . Now $\varangle A^{\prime} A B^{\prime} \cong \varangle A B^{\prime} B$ by I-29.

In addition, $\varangle A B B^{\prime} \cong \varangle A A^{\prime} B$ since they are right angles by Postulate 4 and $\overline{A B^{\prime}}=\overline{A B^{\prime}}$ by CN4. Hence the triangles are congruent by

Parallel Lines are Equidistant

Let a and b be parallel lines. To show they are equidistant, let A and A^{\prime} be points on a. Construct the perpendiculars to b through A and A^{\prime} by $\mathrm{l}-12$ and label the intersections as B and B^{\prime}. Construct $A B^{\prime}$ by Postulate 1 . Now $\varangle A^{\prime} A B^{\prime} \cong \varangle A B^{\prime} B$ by I-29.

In addition, $\varangle A B B^{\prime} \cong \varangle A A^{\prime} B$ since they are right angles by Postulate 4 and $\overline{A B^{\prime}}=\overline{A B^{\prime}}$ by CN4. Hence the triangles are congruent by $\mathrm{I}-26$ (AAS) and so $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}$.

- What first goes wrong in hyperbolic geometry?
- What goes wrong in spherical geometry?

What are the shortest distance paths in Escher's model of hyperbolic geometry?
a) perpendicular to the boundary at infinity
b) symmetric paths that cut through the center of creatures
c) feel straight intrinsically
d) more than one of the above but not all of the above
e) all of a), b) and c)

In the existence portion of Playfair's, to show that a parallel exists, we used:
a) perpendicular to the perpendicular to the line
b) Euclid's Elements I-11 and I-12
c) Euclid's Elements I-16
d) more than one of the above but not all of the above
e) all of a), b) and c)

What goes wrong, if anything, with the existence portion of Playfair's in spherical geometry?
a) Euclid's Elements I-11
b) Euclid's Elements I-12
c) Euclid's Elements I-16
d) more than one of the above but not all of the above
e) all of a), b), c) or none of the above

What goes wrong, if anything, with the existence portion of Playfair's in hyperbolic geometry?
a) Euclid's Elements I-11
b) Euclid's Elements I-12
c) Euclid's Elements I-16
d) more than one of the above but not all of the above
e) all of a), b), c) or none of the above

What goes wrong, if anything, with the existence portion of Playfair's in hyperbolic geometry?
a) Euclid's Elements I-11
b) Euclid's Elements I-12
c) Euclid's Elements I-16
d) more than one of the above but not all of the above
e) all of a), b), c) or none of the above
https://www.geogebra.org/m/xynfrc93

Pythagorean in Hyperbolic Geometry

Pythagorean in Hyperbolic Geometry

Poincaré Disk Model

This sketch depicts the hyperbolic plane H^{2} using the Poincare disk model. In this model, a line through Uso this document's custom tools to perform constructions on the hyperbolic plane, comparing your findings to equivalent constructions on the Eucidean plane.

Can we construct a square? $\mathrm{m} \angle \mathrm{ABC}=90.0^{\circ}$
$\mathrm{m} \angle \mathrm{BCD}=90.0^{\circ}$
$A B=1.14$
$B C=1.14$
$C D=1.14$
$A D=1.81$
$m \angle C D A=54.2^{\circ}$

2006
© COURTNE Y GIBBONS
Dr. Sarah

Pythagorean in Hyperbolic Geometry

Poincaré Disk Model

This sketch depicts the hyperbolic plane H^{2} using the Poincare disk model. In this model, a line through two points is defined as the Euclidean arc passing through the points and perpendicular to the circle. to equivalent constructions on the Euclidean plane.

Disk Controls

Dr. Sarah

Representing Geometries

Dutch graphic artist M.C. Escher's Sphere Surface with Fish, 1958 and Circle Limit IV: Heaven and Hell, 1960;
Latvian/US mathematician Daina Taimina Crocheting Adventures with Hyperbolic Planes

Does the real universe have curves? Euclidean?

Mike Peters https://www.grimmy.com/comics.php?sel_dt=2012-05-21

Venus

Scientific \& Mathematical Breakthroughs

- They require imaginative leaps
- Understanding what we are seeing is complicated by filters

Nicolaus Copernicus (1473-1543): Heliocentric Model

Angle Sum Experiments

- Carl Frederich Gauss (1777-1855): Hoher Hagen, Inselsberg, and Brocken $180^{\circ} \pm \frac{1}{180}$

- Nikolai Lobachevsky (1792-1856): star Sirius 180° - sum of the angles $=3.727 \times 10^{-6}\left(\right.$ should be $\left.10^{-8}\right)$

Angle Sum Experiments

- Carl Frederich Gauss (1777-1855): Hoher Hagen, Inselsberg, and Brocken $180^{\circ} \pm \frac{1}{180}$

- Nikolai Lobachevsky (1792-1856): star Sirius 180° - sum of the angles $=3.727 \times 10^{-6}$ (should be 10^{-8}) Euclidean $=180^{\circ}$, spherical $>180^{\circ}$, hyperbolic $<180^{\circ}$
- Critiques: margin of error, light rays bend with gravity, triangles too small, convenience sample

Supernova Experiments

Euclidean inverse square law: brightness $\sim \frac{1}{\text { distance }^{2}}$

Euclidean inverse square law: brightness $\sim \frac{1}{\text { distance }^{2}}$ Hyperbolic < and spherical >

Distant supernovae dimmer than expected in Euclidean

Euclidean inverse square law: brightness $\sim \frac{1}{\text { distance }^{2}}$ Hyperbolic < and spherical >

Distant supernovae dimmer than expected in Euclidean Critiques: Experimental error, no perfect model, not necessarily exploding at the same brightness

Density Experiments: WMAP \& Planck

- Cosmic Microwave Background: small temperature fluctuations due to primordial plasma density
- Density equation
- Infinite Euclidean universe $0 \pm .4 \%$

Density Experiments: WMAP \& Planck

- Cosmic Microwave Background: small temperature fluctuations due to primordial plasma density
- Density equation
- Infinite Euclidean universe $0 \pm .4 \%$
- Missing fluctuations on large scale better fit a large spherical dodecahedral space [Jeff Weeks] or hyperbolic [Ron Cowen]

Density Experiments: WMAP \& Planck

- Cosmic Microwave Background: small temperature fluctuations due to primordial plasma density
- Density equation
- Infinite Euclidean universe $0 \pm .4 \%$
- Missing fluctuations on large scale better fit a large spherical dodecahedral space [Jeff Weeks] or hyperbolic [Ron Cowen]
- Critiques: convenience samples, observable, experimental error, difficulty agreeing on the meaning of the data, neutrino mass, dark energy, speed of light?

Wilkinson Microwave Anisotropy Probe (WMAP)

Spherical Dodecahedron?

historically Platonic solids: universe = finite dodecahedron

Paul Nylander: life from the inside

Hyperbolic Structures?

Jos Leys

Applications of Hyperbolic Geometry

- Models of the internet to reduce the load on routers

Sustaining the Internet with hyperbolic mapping: Marian Boguna, Fragkiskos Papadopoulos \& Dmitri Krioukov

- Building crystal structures to store more hydrogen or absorb more toxic metals

Modeling and Explaining Real-Life Behavior

www.sciencenews.org/article/einsteins-genius-changed-sciences-perception-gravity

- hyperbolic geometry better models Mercury's orbit
- both Euclidean and non-Euclidean geometry map the brain to diagnose or monitor neurological diseases

Modeling and Explaining Real-Life Behavior

life.dpics.org

CC-BY-2.0 Margaret Wertheim

