Equidistant

- Prove that parallel lines imply that they are equidistant in Euclidean geometry.
- What goes wrong on the sphere and in hyperbolic geometry?

Guess the punchline!

イロト イポト イヨト イヨト

ъ

Parallel Lines are Equidistant Let *a* and *b* be parallel lines. To show they are equidistant, let *A* and A' be points on a. Construct the perpendiculars to b through A and A' by

< □ > < 同 > < 三 > <

- ⊒ →

Parallel Lines are Equidistant Let *a* and *b* be parallel lines. To show they are equidistant, let *A* and A' be points on a. Construct the perpendiculars to b through A and A' by I-12 and label the intersections as B and Β'.

Parallel Lines are Equidistant Let *a* and *b* be parallel lines. To show they are equidistant, let *A* and A' be points on a. Construct the perpendiculars to b through A and A' by I-12 and label the intersections as B and B'. Construct $\overline{AB'}$ by

Parallel Lines are Equidistant Let *a* and *b* be parallel lines. To show they are equidistant, let *A* and A' be points on a. Construct the perpendiculars to b through A and A' by I-12 and label the intersections as B and B'. Construct $\overline{AB'}$ by Postulate 1. Now $\triangleleft A'AB' \cong \triangleleft AB'B$ by

Parallel Lines are Equidistant Let *a* and *b* be parallel lines. To show they are equidistant, let *A* and A' be points on a. Construct the perpendiculars to b through A and A' by I-12 and label the intersections as B and B'. Construct $\overline{AB'}$ by Postulate 1. Now $\triangleleft A'AB' \cong \triangleleft AB'B$ by I-29.

In addition, $\triangleleft ABB' \cong \triangleleft AA'B$ since they are right angles by Postulate 4 and $\overline{AB'} = \overline{AB'}$ by CN4. Hence the triangles are congruent by

Parallel Lines are Equidistant Let *a* and *b* be parallel lines. To show they are equidistant, let *A* and A' be points on a. Construct the perpendiculars to b through A and A' by I-12 and label the intersections as B and B'. Construct $\overline{AB'}$ by Postulate 1. Now $\triangleleft A'AB' \cong \triangleleft AB'B$ by I-29.

In addition, $\triangleleft ABB' \cong \triangleleft AA'B$ since they are right angles by Postulate 4 and $\overline{AB'} = \overline{AB'}$ by CN4. Hence the triangles are congruent by I-26 (AAS) and so $\overline{AB} \cong \overline{A'B'}$.

- What first goes wrong in hyperbolic geometry?
- What goes wrong in spherical geometry?

What are the shortest distance paths in Escher's model of hyperbolic geometry?

- a) perpendicular to the boundary at infinity
- b) symmetric paths that cut through the center of creatures
- c) feel straight intrinsically
- d) more than one of the above but not all of the above
- e) all of a), b) and c)

・ 同 ト ・ ヨ ト ・ ヨ ト …

In the existence portion of Playfair's, to show that a parallel exists, we used:

- a) perpendicular to the perpendicular to the line
- b) Euclid's Elements I-11 and I-12
- c) Euclid's Elements I-16
- d) more than one of the above but not all of the above
- e) all of a), b) and c)

What goes wrong, if anything, with the existence portion of Playfair's in spherical geometry?

- a) Euclid's Elements I-11
- b) Euclid's Elements I-12
- c) Euclid's Elements I-16
- d) more than one of the above but not all of the above
- e) all of a), b), c) or none of the above

- ⊒ →

What goes wrong, if anything, with the existence portion of Playfair's in hyperbolic geometry?

- a) Euclid's Elements I-11
- b) Euclid's Elements I-12
- c) Euclid's Elements I-16
- d) more than one of the above but not all of the above
- e) all of a), b), c) or none of the above

・ 同 ト ・ ヨ ト ・ ヨ ト …

What goes wrong, if anything, with the existence portion of Playfair's in hyperbolic geometry?

- a) Euclid's Elements I-11
- b) Euclid's Elements I-12
- c) Euclid's Elements I-16
- d) more than one of the above but not all of the above
- e) all of a), b), c) or none of the above

https://www.geogebra.org/m/xynfrc93

Pythagorean in Hyperbolic Geometry

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ○ 回 - - - の Q ()

Pythagorean in Hyperbolic Geometry

Dr. Sarah

Pythagorean in Hyperbolic Geometry

Representing Geometries

Dutch graphic artist M.C. Escher's Sphere Surface with Fish, 1958 and Circle Limit IV: Heaven and Hell, 1960; Latvian/US mathematician Daina Taimina *Crocheting Adventures with Hyperbolic Planes*

イロト イポト イヨト イヨト

ъ

Does the real universe have curves? Euclidean?

Mike Peters https://www.grimmy.com/comics.php?sel_dt=2012-05-21

*ロ * *母 * * 国 * * 国 * .

ъ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Dr. Sarah

Dr. Sarah

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Dr. Sarah

Scientific & Mathematical Breakthroughs

- They require imaginative leaps
- Understanding what we are seeing is complicated by filters

- ⊒ →

Angle Sum Experiments

• Carl Frederich Gauss (1777–1855): Hoher Hagen, Inselsberg, and Brocken $180^{\circ} \pm \frac{1}{180}$

Ranelsen - Hoher Hagen - Inselstern Das größte von Carl Friedrich Gauß vermessene Dreieck im Zuge der hannoverschen Gradmessung (1821 - 1825)zur Bestimmung der Erdgestalt.

• Nikolai Lobachevsky (1792–1856): star Sirius 180° – sum of the angles = 3.727×10^{-6} (should be 10^{-8})

ヘロト ヘアト ヘヨト ヘ

Angle Sum Experiments

• Carl Frederich Gauss (1777–1855): Hoher Hagen, Inselsberg, and Brocken 180° $\pm \frac{1}{180}$

Ranelsen - Hoher Hagen - Inselstern Das größte von Carl Friedrich Gauß vermessene Dreieck im Zuge der hannoverschen Gradmessung (1821 - 1825)zur Bestimmung der Erdgestalt.

- Nikolai Lobachevsky (1792–1856): star Sirius 180° sum of the angles = 3.727×10^{-6} (should be 10^{-8}) Euclidean=180°, spherical> 180°, hyperbolic< 180°
- Critiques: margin of error, light rays bend with gravity, triangles too small, convenience sample

э

Distant supernovae dimmer than expected in Euclidean

ъ

Distant supernovae dimmer than expected in Euclidean Critiques: Experimental error, no perfect model, not necessarily exploding at the same brightness

Density Experiments: WMAP & Planck

- Cosmic Microwave Background: small temperature fluctuations due to primordial plasma density
- Density equation
- Infinite Euclidean universe 0 \pm .4%

Density Experiments: WMAP & Planck

- Cosmic Microwave Background: small temperature fluctuations due to primordial plasma density
- Density equation
- Infinite Euclidean universe $0 \pm .4\%$
- Missing fluctuations on large scale better fit a large spherical dodecahedral space [Jeff Weeks] or hyperbolic [Ron Cowen]

ヘロト 人間 ト ヘヨト ヘヨト

Density Experiments: WMAP & Planck

- Cosmic Microwave Background: small temperature fluctuations due to primordial plasma density
- Density equation
- Infinite Euclidean universe $0 \pm .4\%$
- Missing fluctuations on large scale better fit a large spherical dodecahedral space [Jeff Weeks] or hyperbolic [Ron Cowen]
- Critiques: convenience samples, observable, experimental error, difficulty agreeing on the meaning of the data, neutrino mass, dark energy, speed of light?

イロト イポト イヨト イヨト 三日

Wilkinson Microwave Anisotropy Probe (WMAP)

Spherical Dodecahedron?

historically Platonic solids: universe = finite dodecahedron

Paul Nylander: life from the inside $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle = \langle \neg \rangle < \bigcirc$

Dr. Sarah

Hyperbolic Structures?

Jos Leys

<ロ> (四) (四) (三) (三) (三)

Dr. Sarah

Applications of Hyperbolic Geometry

Models of the internet to reduce the load on routers

Sustaining the Internet with hyperbolic mapping: Marian Boguna, Fragkiskos Papadopoulos & Dmitri Krioukov

Building crystal structures to store more hydrogen or absorb more toxic metals

Modeling and Explaining Real-Life Behavior

www.sciencenews.org/article/einsteins-genius-changed-sciences-perception-gravity

- hyperbolic geometry better models Mercury's orbit
- both Euclidean and non-Euclidean geometry map the brain to diagnose or monitor neurological diseases

ヘロト 人間 ト ヘヨト ヘヨト

Modeling and Explaining Real-Life Behavior

life.dpics.org

CC-BY-2.0 Margaret Wertheim

イロト イヨト イヨト イ

э

ъ