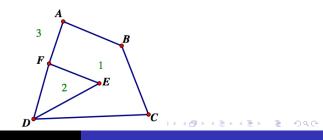
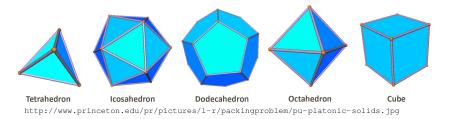
V-E+F Experiment

- Draw a few dots (vertices)
- Connect the dots with lines, subject to the following rules:
 - lines may not cross each other as they move from dot to dot
 - every dot must be connected to every other dot through a sequence of lines
 - every region must topologically be a disk with no holes
- Compute

Vertices (V) - Edges (E) + Faces Separated by Edges (F) [Do not forget to count the outside as a region for F too.]



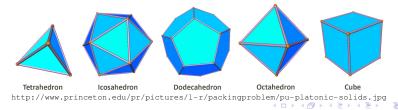
- What is Vertices (V) Edges (E) + Faces (F) for the regular polyhedra?
- Where is the symmetry of a ^{2π}/₃ rotation for each polyhedra? Describe the axis of rotation in each case.



One may think at first that one can construct an infinite number of regular polyhedra in three-dimensions, just as we could construct an infinite number of regular polygons in two-dimensions. However, this does not turn out to be the case.

There are only five regular polyhedra, but why?

So their combinations with themselves and with each other give rise to endless complexities, which anyone who is to give a likely account of reality must survey. [Plato, The Timaeus]



n total polygonal faces and p k-sided faces touch at a vertex

n total polygonal faces and p *k*-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

E =

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

$$E=\frac{nk}{2}$$
 $V=$

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

$$E = \frac{nk}{2}$$
 $V = \frac{nk}{p}$

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

$$E = \frac{nk}{2}$$
 $V = \frac{nk}{p}$

э.

2 = V - E + F =

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

$$E = \frac{nk}{2} \qquad V = \frac{nk}{p}$$
$$2 = V - E + F = \frac{nk}{p} - \frac{nk}{2} + n =$$

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

$$E = \frac{nk}{2} \qquad V = \frac{nk}{p}$$
$$2 = V - E + F = \frac{nk}{p} - \frac{nk}{2} + n = n(\frac{k}{p} - \frac{k}{2} + 1)$$

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

$$E = \frac{nk}{2} \qquad V = \frac{nk}{p}$$

$$2 = V - E + F = \frac{nk}{p} - \frac{nk}{2} + n = n(\frac{k}{p} - \frac{k}{2} + 1)$$
n>0 and n $(\frac{k}{p} - \frac{k}{2} + 1) = 2 > 0$, so
 $\frac{k}{p} - \frac{k}{2} + 1 > 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

$$E = \frac{nk}{2} \qquad V = \frac{nk}{p}$$

$$2 = V - E + F = \frac{nk}{p} - \frac{nk}{2} + n = n(\frac{k}{p} - \frac{k}{2} + 1)$$

$$n > 0 \text{ and } n(\frac{k}{p} - \frac{k}{2} + 1) = 2 > 0, \text{ so}$$

$$\frac{k}{p} - \frac{k}{2} + 1 > 0$$

$$\frac{k}{p} + 1 > \frac{k}{2}$$

$$multiply by \frac{2}{k}$$

3

n total polygonal faces and *p* k-sided faces touch at a vertex Ex: Cube has 3 squares at a vertex so p=3, k=4 and n=6

 $E = \frac{nk}{2}$ $V = \frac{nk}{n}$ $2 = V - E + F = \frac{nk}{n} - \frac{nk}{2} + n = n(\frac{k}{n} - \frac{k}{2} + 1)$ n>0 and n ($\frac{k}{n} - \frac{k}{2} + 1$) = 2 >0, so $\frac{k}{p} - \frac{k}{2} + 1 > 0$ $\frac{k}{p} + 1 > \frac{k}{2}$ multiply by $\frac{2}{k}$ $\frac{2}{p} + \frac{2}{k} > 1$

p k-sided faces touch at a vertex [cube: 3 4-sided squares]

$$\frac{2}{p}+\frac{2}{k}>1$$

Euclidean polyhedra $p \ge 3$ and regular planar polygon $k \ge 3$

p = 3 and k = 3

p k-sided faces touch at a vertex [cube: 3 4-sided squares]

$$\frac{2}{p}+\frac{2}{k}>1$$

Euclidean polyhedra $p \ge 3$ and regular planar polygon $k \ge 3$

p = 3 and k = 3 tetrahedron p = 3 and k = 4

p k-sided faces touch at a vertex [cube: 3 4-sided squares]

$$\frac{2}{p}+\frac{2}{k}>1$$

Euclidean polyhedra $p \ge 3$ and regular planar polygon $k \ge 3$

p = 3 and k = 3 tetrahedron p = 3 and k = 4 cube p = 3 and k = 5

p k-sided faces touch at a vertex [cube: 3 4-sided squares]

$$\frac{2}{p}+\frac{2}{k}>1$$

- p = 3 and k = 3 tetrahedron p = 3 and k = 4 cube
- p = 3 and k = 5 dodecahedron
- p = 3 and $k \ge 6$

p k-sided faces touch at a vertex [cube: 3 4-sided squares]

$$\frac{2}{p}+\frac{2}{k}>1$$

- p = 3 and k = 3 tetrahedron
- p = 3 and k = 4 cube
- p = 3 and k = 5 dodecahedron
- p = 3 and $k \ge 6$ doesn't satisfy inequality
- p = 4 and k = 3

p k-sided faces touch at a vertex [cube: 3 4-sided squares]

$$\frac{2}{p}+\frac{2}{k}>1$$

- p = 3 and k = 3 tetrahedron
- p = 3 and k = 4 cube
- p = 3 and k = 5 dodecahedron
- p = 3 and $k \ge 6$ doesn't satisfy inequality
- p = 4 and k = 3 octahedron

p k-sided faces touch at a vertex [cube: 3 4-sided squares]

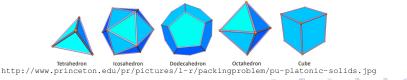
$$\frac{2}{p}+\frac{2}{k}>1$$

- p = 3 and k = 3 tetrahedron
- p = 3 and k = 4 cube
- p = 3 and k = 5 dodecahedron
- p = 3 and $k \ge 6$ doesn't satisfy inequality
- p = 4 and k = 3 octahedron
- p = 5 and k = 3

p k-sided faces touch at a vertex [cube: 3 4-sided squares]

$$\frac{2}{p}+\frac{2}{k}>1$$

- p = 3 and k = 3 tetrahedron
- p = 3 and k = 4 cube
- p = 3 and k = 5 dodecahedron
- p = 3 and $k \ge 6$ doesn't satisfy inequality
- p = 4 and k = 3 octahedron
- p = 5 and k = 3 icosahedron



Spherical Icosahedron

CC-BY-SA-3.0 Hellbus

- William O. Gustafson / Uwe Meffert
- 23 563 902 142 421 896 679 424 000 combinations
- V=12, E=30, F=20

$$\frac{2}{p}+\frac{2}{k}>1$$

p k-sided faces touch at a vertex [cube: 3 squares] Euclidean polyhedra $p \ge 3$ and regular planar polygon $k \ge 3$

- k=3 and p=3 tetrahedron
- k=3 and p=4 octahedron
- k=3 and p=5 icosahedron
- k=4 and p=3 cube
- k=5 and p=3 dodecahedron

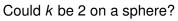
Could k be 2 on a sphere?

< □ > < 同 > < 三 > <

$$\frac{2}{p}+\frac{2}{k}>1$$

p k-sided faces touch at a vertex [cube: 3 squares] Euclidean polyhedra $p \ge 3$ and regular planar polygon $k \ge 3$

- k=3 and p=3 tetrahedron
- k=3 and p=4 octahedron
- k=3 and p=5 icosahedron
- k=4 and p=3 cube
- k=5 and p=3 dodecahedron



$$\frac{2}{p} + \frac{2}{k} > 1$$

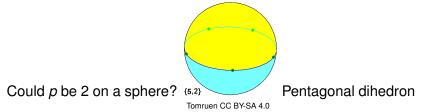
p k-sided faces touch at a vertex [cube: 3 squares]

æ

Could *p* be 2 on a sphere?

$$\frac{2}{p}+\frac{2}{k}>1$$

p k-sided faces touch at a vertex [cube: 3 squares]



▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQ@