Measuring Curvature at a Vertex

Structure of Viruses Approximations Shape of Universe

1. Russell Knightley. http://www.rkm.com.au/VIRUS/HIV, 2. K. Weiss & L. De Floriani: Isodiamond

Hierarchies, IEEE Transactions on Vis & Comp Graphics http://kennyweiss.com/ 3. Paul Nylander: life from

Angle defect at a vertex = 360° - sum angles at a vertex

Polyhedron Angle Defect V (# Vertices) Total Angle Defect Dodecahedron flat soccer ball (truncated icosahedron)

angle defect at a vertex = 2π – sum angles at a vertex

total angle defect = \sum_{V} angle defect at a vertex=

angle defect at a vertex = 2π – sum angles at a vertex

total angle defect = \sum_{V} angle defect at a vertex= $2\pi V$ – sum of all the angles

sum of angles in 1 face =

angle defect at a vertex = 2π – sum angles at a vertex

total angle defect = \sum_{V} angle defect at a vertex= $2\pi V$ – sum of all the angles

sum of angles in 1 face = π (# sides in face -2) = π (# sides) -2π

sum of all the angles=

angle defect at a vertex = 2π – sum angles at a vertex

total angle defect = \sum_{V} angle defect at a vertex= $2\pi V$ – sum of all the angles

sum of angles in 1 face = π (# sides in face -2) = π (# sides) -2π

sum of all the angles= \sum_{F} sum in each face = π (all sides) $-2\pi F$.

Why is the Total Angle Defect 720 $^{\circ}$?

angle defect at a vertex = 2π – sum angles at a vertex

total angle defect = \sum_{V} angle defect at a vertex= $2\pi V$ – sum of all the angles

sum of angles in 1 face = π (# sides in face -2) = π (# sides)-2 π

sum of all the angles= \sum_{F} sum in each face = π (all sides) $-2\pi F$. Recall that all the sides double counts along the edges *E* so sum of all the angles= $2\pi E - 2\pi F$

angle defect at a vertex = 2π – sum angles at a vertex

total angle defect = \sum_{V} angle defect at a vertex= $2\pi V$ – sum of all the angles

sum of angles in 1 face = π (# sides in face -2) = π (# sides) -2π

sum of all the angles= \sum_{F} sum in each face = π (all sides) $-2\pi F$. Recall that all the sides double counts along the edges *E* so sum of all the angles= $2\pi E - 2\pi F$

total angle defect = $2\pi V - (2\pi E - 2\pi F) = 2\pi (V - E + F)$ geometric combinatorics

Polyhedra

In the proof that there are five regular polyhedra, recall that we had *n* total polygonal faces and *p* k-sided faces touch at a vertex. Characterize *E* and *V* in terms of *n*, *p* and *k*.

イロト イポト イヨト イヨト 一臣

a)
$$E = \frac{nk}{2}$$
 $V = \frac{nk}{p}$

b)
$$E = \frac{nk}{2}$$
 $V = \frac{nk}{2}$

c)
$$E = \frac{nk}{p}$$
 $V = \frac{nk}{2}$

d)
$$E = \frac{nk}{p}$$
 $V = \frac{nk}{p}$

e) other

Taxicab Geometry

- ⊒ →

In taxicab geometry, do 3 noncollinear points determine a unique taxicab circle?

a) yes and I have a good reason why

b) yes but I am unsure of why

c) no but I am unsure of why not

d) no and I have a good reason why not

e) other