### Division

• How could you explain division to a young child?

(< ∃) < ∃)</p>

< 🗇 🕨

## Division

- How could you explain division to a young child?
- Pizza from a cut,  $\frac{2\pi}{8} = 45$  degrees

< 🗇 🕨

· < 프 > < 프 >

### Division

- How could you explain division to a young child?
- Pizza from a cut,  $\frac{2\pi}{8} = 45$  degrees
- Plane:  $(x, y) \rightarrow (x+1, y)$



### Surfaces that Locally Look Like the Plane?

- Felix Klein posed the question in 1890
- In Klein's Erlangen Program, the properties of a space were understood by the transformations that preserved them.
- Heinz Hopf's rigorous solution was 1925
  A complete connected surface which locally looks like the plane is obtained via a quotient by a group of isometries acting without fixed points



Sarah J. Greenwald, Appalachian State University

Surfaces that look like the plane and sphere, projective plane

#### Surfaces that Locally Look Like the Plane

 Heinz Hopf's rigorous solution was 1925
 A complete connected surface which locally looks like the plane is obtained via a quotient by a group of isometries acting without fixed points

Two points are the same if and only if we can get from one point to the other by a transformation: plane, cylinder, Mobius Band, flat Clifford torus, flat Klein bottle



Sarah J. Greenwald, Appalachian State University

Surfaces that look like the plane and sphere, projective plane

### Surfaces that Locally Look Like the Sphere: $\mathbb{R}P^2$

•  $\frac{S^2}{\Gamma}$  where  $\Gamma = \{\text{identity, } (x, y, z) \rightarrow (-x, -y, -z)\}.$ 



Sarah J. Greenwald, Appalachian State University

Surfaces that look like the plane and sphere, projective plane

# Projective Geometry: $\mathbb{R}P^2$



- Elegant
- Duality between points and lines
- Conics

Sarah J. Greenwald, Appalachian State University

Surfaces that look like the plane and sphere, projective plane

★ E → < E →</p>

#### Hierarchies of Geometries via Transformations



Arthur Cayley: "projective geometry is all geometry"

Sarah J. Greenwald, Appalachian State University Surfaces that look like the plane and sphere, projective plane

イロン 不得 とくほ とくほ とうほう

#### Hierarchies of Geometries via Transformations



- Arthur Cayley: "projective geometry is all geometry"
- Euclidean transformations ⊂ Similarity transformations (includes scalings) ⊂ projective transformations
- Spherical and hyperbolic ⊂ projective
- smaller the transformation group, the more rigid and more invariants.