The Euclidean Algorithm

Deniz Gurel

December 5% 2014

Abstract

The greatest common divisor or greatest common factor of two
positive integers is a familiar concept to most anyone who has made
it through high school. Yet, while the concept is seemingly simple to
understand, the method for computing the greatest common divisor
has many complex applications. The method known as the Euclidean
algorithm is a beatifully simplistic way to find the greatest common
divisor of two arbitrary integers. Using only subtraction, multiplica-
tion, and inequalities, the Euclidean algorithm is one of the easiest
numerical algorithms to understand, but throughout history it has
proven essential in soliving difficult problems in both mathematics
and computer science.

Contents

1 Introduction
1.1 Prior Experience oL
1.1.1 MAT 3110 Modern Algebra
1.1.2 CS 2440 Computer Science IT
1.1.3 CS 3460 Data Structures

2 Developments :
2.1 History e
2.1.1 Earliest Worko
2.1.2 19th Century
21.3 20th Century
2.2 Recent Scholarly Research

3 Acknowledgements and References 8

1 Introduction

The earliest printed instance of the Euclidean algorithm is in the greek math-
matician Euclid’s famous book titled Fuclid’s Elements written in 300 B.C.
Euclid uses the familiar concept of integer distances to craft an abritrary way
of finding the greatest common divisor of two integers that are not relatively
prime.

8 00 E F D E
HPFG TG PR TG 449 21 7

Euchd’s exarple Nicomachus' example

Figure 1: An illustrated version of Euclid’s algorithm

Euclid’s example above comes straight from proposition 2 from book VII
of Euclid’s Elements. Euclid basically states that in order find the ged of
two integers AB and C'D such that AB > CD one must start by finding the
remainder of AB/CD. In the Euclidean example above this remainder is AE.
The proccess is then repeated with CD and AFE until the remainder is zero.

In Euclid’s example the remainder of AE/FC is zero, thus GCD(AB, CD) =
FC. Below is an application of the algorithm using 1071 and 462.

1071 = (2 x 462) + 147 (1)
462 = (3 x 147) + 21 (2)
147 = (7 x 21) 40 (3)

GCD(1071,462) = 21 (4)

1.1 Prior Experience

While not taught outright the Euclidean algorithm has applications in many
fields of mathematics and computer science. Since the Euclidean algorithm is
relatively simple to grasp it is often used to demonstrate the idea of recursion
for students in introductory level courses.

1.1.1 MAT 3110 Modern Algebra

The early sections discussed in modern algebra covered concepts such as
relatively prime numbers and divisibility. A powerful proposition was in-
dtroduced stating that two integers a and b are relatively prime (GCD(a,b)
= 1) if and only if there are two integers m and n such that ma + nb = 1.
This proposition allowed us to think about numbers in a sense that we gen-
erally were not used to. However this proposition was only useful if we knew
two numbers were relatively prime, which is where Euclid’s algorithm comes
into the picture. Later on in the semester, we discussed the real-world appli-
cations of abstract algebra, specifically in the area of RSA encryption. The
RSA algorithm uses many concepts from abstract algebra in order to encrypt
and decrypt information. There is a crucial step in the RSA algorithm where
the Euclidean algorithm can be applied. Without the ability to find multi-
plicative inverses in finite rings, the RSA algorithm would fail, luckily the
Euclidean algorithm can be manipulated to find an efficient solution.

1.1.2 CS 2440 Computer Science II

In the second level of computer science study at Appalachian State we began
a more rigorous approach to the problems that present themselves in com-
puter programming. In computer science recursion is the concept where a
function will call itself. Recursion became an area of focus throughout the
course as it is generally one of the more difficult concepts to understand. As
the semester went on I would search for examples to help me understand
recursion, which is where I stumbled upon the Euclidean algorithm. The
algorithm can be especially helpful for students because the recursion is nat-
urally there, and it doesn’t feel forced like many other examples in computer
science classes.

1.1.3 CS 3460 Data Structures

Data Structures was a class that focused primarily on how data is manipu-
lated using software. The course focused on the implementations of arrays,
trees, and hash maps. In order to do well in the course we needed to com-
plete long and complex programming assignments which required the use of
many non-trivial algorithms and data structures. In a certain programming
assignment I found that I needed to solve for the greatest common denomi-
nator of three different numbers, so I applied my knowledge of the Euclidean
algorithm to help solve the problem. Below is the code written in C:

int ged(int a, int b, int c¢){
//The ged(a, b, ¢) is the same as the gcd(a, gcd(b, c)
return euclid (a, euclid(b, ¢));

}

int euclid (int a, int b){

if (b= 0){
return a;
} else {

//the ’%’ means modulus: a % b is
//equivalent to the remainder of a / b
return euclid (b, a % b);

As you can see above the implementation of Euclid’s algorithm is both elegant
and simple, and it is relatively efficient in terms of processing speed. In the
function named euclid you can see that if the parameter b is 0 then we return
the parameter a. This is for the end case of the Euclidean algorithm where the
remainder is zero. Since the remainder is always passed along as the second
parameter we must check to see if the algorithm is finished. Variations of the
function named euclid have been implemented in many different applications
to solve a wide variety of software based problems.

2 Developments

Since the Euclidean algorithm has been around for a substantial period of
time, there have been a large number of works applying the algorithm in one
way or another. Because of the breadth of topics that utilize the Euclidean
algorithm I will only cover a few important applications of the algorithm.

2.1 History
2.1.1 Earliest Work

Euclid’s algorithm was first printed in the book Fuclid’s Elements around
the year 300 B.C. Euclid discussed the algorithm in a geometrical using
between named points to represent integers, as this was a simple way of
showing remainders. The algorithm proved to be useful in the following
chapters of Fuclid’s Elements since Euclid used the algorithm in many other
corollaries throughout the text. Many historians believe that the algorithm
was first introduced centuries before Euclid’s life, since many of the examples
in Euclid’s Elements were merely compiled by Euclid and not discovered.[1]

2.1.2 19th Century

In the 1800s Carl Friedrich Gauss used the Euclidean algortithm in showing
the unique factorization Gaussian integers. Peter Gustav Lejeune Dirichlet
was one of the first to realize the importance of the algorithm to number
theory, and he applied numerical theorems number sets where the Euclidean
algorithm could also be applied. In the late 19*" century Richard Dedekind
expanded on Dirichlet and Gauss’ work and proved Fermat’s two square
theorem using the unique factorization of gaussian integers. Dedekind also

defined what is known as a Euclidean domain, a set of elements that form a
communative ring under two general operations, where the Euclidean algo-
rithm can be applied in a much more general sense.[2]

2.1.3 20th Century

The development of computers in the 1900s opened up a brand new avenue
of applications for the Euclidean algorithm. In 1977, Ron Rivest, Adi Shamir
and Leonard Adleman published a paper detailing how a public encryption
key can be applied to a message that can only be decrypted by a private
decryption key. The ecryption method became known as RSA encryption
for the first letter of each author’s name. A key piece of the encryption
algorithm developed by Rivest, Shamir, and Adleman requires finding mul-
tiplicative inverses in large prime rings, which can easily be done using the
euclidean algorithm.[3]

Below is an example of finding the multiplicative inverse of 20 in a ring with
the operations multiplication and addition modulus 97.

We will start by applying the algorithm to (20, 97)

07 = (4 x 20) + 17
20=(1x17) +3
17 = (5 x 3) + 2
3=(1x2)+1

By rewriting the above equations so that the numbers to the right of the
addition (17, 3, 2, and 1) are isolated we can substitute and solve for 1 as a

sum of products.

17 = 97 — (4 x 20)

3=20-17
=20 — (97 — (4 x 20))
= —97 + (5 x 20)

2=17-(5x 3)

= (97 — (4 x 20)) — (5 x (=97 + (5 x 20))
= (6 x 97) — (29 x 20)

1=3-2
= (=97 + (5 x 20)) — ((6 x 97) — (29 x 20))
= (=7 x 97) + (34 x 20)

We can clearly see that (34 x 20) = 14 (7 x 97). Since we are using a ring
under addition/multiplication modulus 97, any multiple of 97 can effectively
be ignored, thus we can see that 34 is the multiplicative inverse of 20 in a mod
97 ring. This extension of the Euclidean algorithm allows modern computers
to find multiplicative inverses of large numbers in even larger prime rings in
virtually no time.

The Euclidean algorithm has also proved useful in error correcting codes such
as Reed-Solomon codes based on Galois fields. The algorithm proves useful
with fields similarly to the method shown above. [4]

2.2 Recent Scholarly Research

The diversity of the Euclidean algorithm is evident in mathematical and com-
puter science research in the present day. As Donald Knuth once said, “[The
Euclidean algorithm] is the granddaddy of all algorithms, because it is the
oldest nontrivial algorithm that has survived to the present day.”[5] Current
mathematical research involves generalizing the algorithm and applying it to
varying concepts in number theory. Once specific example is M.R. Murty
and Kathleen Petersen’s paper on primitive roots and finite fields. They
discussed how the Euclidean algorithm can be generalized to find primitive
roots of finite number fields. Murty and Kathleen were able to determine
various interesting results related to Galois fields and Euclidean domains.[6]

In fields relating to computation the current research is generally related

7

to modifying the Euclidean algorithm as to increase performance. While the
conventional Euclidean algorithm is efficient, it can still take longer than
desired even on modern machines. When the algorithm is generalized to
different numerical constructs the coded version ends up being more com-
plex. By modifying the algorithm slightly for specific purposes researchers
are able to increase the efficiency. Even though current computers are power-
full enough to execute the code with smaller numbers, algorithmic efficiency
is essential when dealing with larger scale numbers.|[7]

3 Acknowledgements and References

References

[1] Buclid. Elements, Book VII. Alexandria: 300 BCE

[2] Moon, Todd K.Error correction coding: mathematical methods and al-
gorithms. Hoboken, New Jersey: John Wiley and Sons, 2005

(3] R.L. Rivest, A. Shamir, and L. Adleman A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems Communications of the ACM
21,2 (Feb. 1978), 120-126. :

[4] Greenfield, Stephen J. Supplementary material for the lecture of Mon-
day, July 12. Available online: http://www.math.rutgers.edu/
“greenfie/gs2004/euclid.html (accsessed October 2014)

[5] Knuth, Donald The Art of Computer Programming, Vol. 2: Seminu-
merical Algorithms. 1981

[6] Murty, M. R. and Kathleen Peterson The Euclidean algorithm for num-
ber fields and primitive roots. Proceedings of the American Mathemati-
cal Society (v. 141/181-190, 2013)

[7] Roy, Marie-Francoise and Sidi Mohamed Sedjelmac New fast Fuclidean
Algorithms. Journal of Symbolic Computation (v. 50/208226, 2013)

Author’s e-mail address: gureldm@gmail.com

