Solve for T, N, κ, B, τ by-hand

- $T(t)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$ because $\frac{d s}{d t}=\left|\alpha^{\prime}(t)\right|$ and $T=\frac{\alpha^{\prime}(t)}{\frac{d s}{d t}}$
- $\vec{\kappa}=T^{\prime}(s)=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$ because $\left.\vec{\kappa}=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{d T}{\frac{d T}{d s}} \frac{T^{\prime}(t)}{d t} \right\rvert\, \frac{\alpha^{\prime}(t) \mid}{}$
- curvature κ : length of $\vec{k}=|\vec{k}|$ and $N(t)=\frac{\vec{k}}{|\vec{k}|}$
- $B(t)=T \times N$
- torsion τ : compute $\frac{B^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$ \& compare it to N (they are multiples of each other) to find $-\tau$ and then τ because $\frac{B^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=\frac{B^{\prime}(t)}{\frac{d s}{d t}}=\frac{d B}{d t} d t=B^{\prime}(s)$ (by chain rule), and we defined this as $-\tau N$.

$$
\alpha(t)=\left(\frac{5}{13} \cos (t),-\sin (t),-\frac{12}{13} \cos (t)\right)
$$

T, κ and N work in higher dimensions, but the osculating plane is not defined by a normal, nor does cross product make sense-that is replaced by tensors and forms.

http://pedemmorsels.com/wp-content/uploads/2014/01/Torsion.jpg

- First show that B^{\prime} has no B component
T, κ and N work in higher dimensions, but the osculating plane is not defined by a normal, nor does cross product make sense-that is replaced by tensors and forms.

http://pedemmorsels.com/wp-content/uploads/2014/01/Torsion.jpg
- First show that B^{\prime} has no B component
- So $B^{\prime}=a T+b N+0 B$. Next show B^{\prime} has no tangential component via a cross product argument, using $B=T \times N$
T, κ and N work in higher dimensions, but the osculating plane is not defined by a normal, nor does cross product make sense-that is replaced by tensors and forms.

http://pedemmorsels.com/wp-content/uploads/2014/01/Torsion.jpg
- First show that B^{\prime} has no B component
- So $B^{\prime}=a T+b N+0 B$. Next show B^{\prime} has no tangential component via a cross product argument, using $B=T \times N$ $B^{\prime}=T^{\prime} \times N+T \times N^{\prime}$
T, κ and N work in higher dimensions, but the osculating plane is not defined by a normal, nor does cross product make sense-that is replaced by tensors and forms.

http://pedemmorsels.com/wp-content/uploads/2014/01/Torsion.jpg
- First show that B^{\prime} has no B component
- So $B^{\prime}=a T+b N+0 B$. Next show B^{\prime} has no tangential component via a cross product argument, using $B=T \times N$ $B^{\prime}=T^{\prime} \times N+T \times N^{\prime}$

$$
\begin{aligned}
& =\kappa N \times N+T \times N^{\prime} \\
& =\kappa|N||N| \sin 0+T \times N^{\prime}=0+T \times N^{\prime}
\end{aligned}
$$

So B^{\prime} is perpendicular to T too and thus has only an N component-we define the component to be $-\tau$

We defined $T^{\prime}=\kappa N$ TNB Derivatives
We showed B^{\prime} had no B component and no T component and thus it makes sense to define $B^{\prime}=-\tau N$.
Assume these relationships above.

- Show that N^{\prime} has no N component
- Show that N^{\prime} has a $-\kappa$ component of T and a τ component of B

We defined $T^{\prime}=\kappa N$ TNB Derivatives
We showed B^{\prime} had no B component and no T component and thus it makes sense to define $B^{\prime}=-\tau N$.
Assume these relationships above.

- Show that N^{\prime} has no N component
- Show that N^{\prime} has a $-\kappa$ component of T and a τ component of B
$T \cdot N=0$ so $T^{\prime} \cdot N+T \cdot N^{\prime}=0$ and $T \cdot N^{\prime}=-T^{\prime} \cdot N=$

We defined $T^{\prime}=\kappa N$ TNB Derivatives
We showed B^{\prime} had no B component and no T component and thus it makes sense to define $B^{\prime}=-\tau N$.
Assume these relationships above.

- Show that N^{\prime} has no N component
- Show that N^{\prime} has a $-\kappa$ component of T and a τ component of B
$T \cdot N=0$ so $T^{\prime} \cdot N+T \cdot N^{\prime}=0$ and
$T \cdot N^{\prime}=-T^{\prime} \cdot N=-\kappa N \cdot N=-\kappa$
$T \cdot N^{\prime}=T \cdot(a T+b N+c B)=a T \cdot T+b T \cdot N+c T \cdot B=a$
so $a=-\kappa$.
Similarly,

We defined $T^{\prime}=\kappa N$ TNB Derivatives
We showed B^{\prime} had no B component and no T component and thus it makes sense to define $B^{\prime}=-\tau N$.
Assume these relationships above.

- Show that N^{\prime} has no N component
- Show that N^{\prime} has a $-\kappa$ component of T and a τ component of B
$T \cdot N=0$ so $T^{\prime} \cdot N+T \cdot N^{\prime}=0$ and
$T \cdot N^{\prime}=-T^{\prime} \cdot N=-\kappa N \cdot N=-\kappa$
$T \cdot N^{\prime}=T \cdot(a T+b N+c B)=a T \cdot T+b T \cdot N+c T \cdot B=a$
so $a=-\kappa$.
Similarly,
$B \cdot N=0$ so $B^{\prime} \cdot N+B \cdot N^{\prime}=0$ and
$B \cdot N^{\prime}=-B^{\prime} \cdot N=--\tau N \cdot N=\tau$
so $b=\tau$ in $a T+b N+c B$
$N^{\prime}=-\kappa T+0 N+\tau B$
QED

TNB Derivatives

http://www.rudyrucker.com/transrealbooks/collectedessays/images/kaptauhand.jpg
$T^{\prime}(s)=\kappa N$
$N^{\prime}(s)=-\kappa T+\tau B$
$B^{\prime}(s)=-\tau N$
$\left[\begin{array}{c}T^{\prime}(s) \\ N^{\prime}(s) \\ B^{\prime}(s)\end{array}\right]=\left[\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right]\left[\begin{array}{c}T \\ N \\ B\end{array}\right]$

Warehouse 13's main characters Myka and Pete are trapped in a lemniscate in "The Greatest Gift." [Syfy, Universal Studios]
https://drive.google.com/file/d/18mfbulz3AgBwEuNYTo0XZJ8At_BYwp5v/view?usp=sharing

Warehouse 13's main characters Myka and Pete are trapped in a lemniscate in "The Greatest Gift." [Syfy, Universal Studios]
https://drive.google.com/file/d/18mfbulz3AgBwEuNYTo0XZJ8At_BYwp5v/view?usp=sharing
a lemniscate can be parameterized so that the metric does expand [Amy Ksir, -]

- Lemniscate of Bernoulli $\left(\frac{3 \cos t}{1+\sin ^{2} t}, \frac{3 \sin t \cos t}{1+\sin ^{2} t}, 0\right)$
- Lemniscate of Myka $\left(\frac{t+t^{3}}{1+t^{4}}, \frac{t-t^{3}}{1+t^{4}}, 0\right)$

