Arc Length, Tangent, and Physical Attributes

- arc length s
- unit tangent T
- velocity
- acceleration
- speed
- jerk

$$
\text { arc length } s(t)=\int_{a}^{t}\left|\alpha^{\prime}(u)\right| d u
$$

- measures the length of a curve by adding up infinitesimal linear approximation (Pythagorean theorem metric)

Arc Length s Simplifies Computations

If α is a differentiable curve that is regular then α can be reparameterized by arc length s to have unit speed/tangent

https://www.khanacademy.org/science/physics/one-dimensional-motion/
acceleration-tutorial/a/acceleration-article

Reparameterizing the Tractrix by Arc Length

- Compute arc length $s(t)=\int_{\frac{\pi}{2}}^{t}\left|\alpha^{\prime}(\theta)\right| d \theta$
- Write the inverse function $t(s)$ by solving for t
- Reparameterize the curve by arc length $\beta(\boldsymbol{s})=\alpha(t(s))$

$$
s(t)=\int-\cot (\theta) d \theta=
$$

Reparameterizing the Tractrix by Arc Length

- Compute arc length $s(t)=\int_{\frac{\pi}{2}}^{t}\left|\alpha^{\prime}(\theta)\right| d \theta$
- Write the inverse function $t(s)$ by solving for t
- Reparameterize the curve by arc length $\beta(\boldsymbol{s})=\alpha(t(s))$
$s(t)=\int-\cot (\theta) d \theta=-\int \frac{\cos (\theta)}{\sin (\theta)} d \theta$
integration by substitution $u=\sin (\theta), d u=\cos (\theta) d \theta$
$s=-\ln |\sin (t)|$ so

Reparameterizing the Tractrix by Arc Length

- Compute arc length $s(t)=\int_{\frac{\pi}{2}}^{t}\left|\alpha^{\prime}(\theta)\right| d \theta$
- Write the inverse function $t(s)$ by solving for t
- Reparameterize the curve by arc length $\beta(\boldsymbol{s})=\alpha(t(\boldsymbol{s}))$
$s(t)=\int-\cot (\theta) d \theta=-\int \frac{\cos (\theta)}{\sin (\theta)} d \theta$
integration by substitution $u=\sin (\theta), d u=\cos (\theta) d \theta$
$s=-\ln |\sin (t)|$ so $e^{-s}=|\sin (t)|$ and $t(s)=\arcsin e^{-s}$

Reparameterizing the Tractrix by Arc Length

- Compute arc length $s(t)=\int_{\frac{\pi}{2}}^{t}\left|\alpha^{\prime}(\theta)\right| d \theta$
- Write the inverse function $t(s)$ by solving for t
- Reparameterize the curve by arc length $\beta(\boldsymbol{s})=\alpha(t(\boldsymbol{s}))$
$s(t)=\int-\cot (\theta) d \theta=-\int \frac{\cos (\theta)}{\sin (\theta)} d \theta$
integration by substitution $u=\sin (\theta), d u=\cos (\theta) d \theta$
$s=-\ln |\sin (t)|$ so $e^{-s}=|\sin (t)|$ and $t(s)=\arcsin e^{-s}$
sub in to $\alpha(t)=\left(\cos (t)+\ln \left(\tan \left(\frac{t}{2}\right)\right), \sin (t)\right)$

Reparameterizing the Tractrix by Arc Length

- Compute arc length $s(t)=\int_{\frac{\pi}{2}}^{t}\left|\alpha^{\prime}(\theta)\right| d \theta$
- Write the inverse function $t(s)$ by solving for t
- Reparameterize the curve by arc length $\beta(\boldsymbol{s})=\alpha(t(\boldsymbol{s}))$
$s(t)=\int-\cot (\theta) d \theta=-\int \frac{\cos (\theta)}{\sin (\theta)} d \theta$
integration by substitution $u=\sin (\theta), d u=\cos (\theta) d \theta$
$s=-\ln |\sin (t)|$ so $e^{-s}=|\sin (t)|$ and $t(s)=\arcsin e^{-s}$
sub in to $\alpha(t)=\left(\cos (t)+\ln \left(\tan \left(\frac{t}{2}\right)\right), \sin (t)\right)$
$\rightarrow \beta(s)=\left(\cos \left(\arcsin e^{-s}\right)+\ln \left(\tan \left(\frac{\arcsin e^{-s}}{2}\right)\right), \sin \left(\arcsin e^{-s}\right)\right)$

Prove: If α is a differentiable curve that is regular then α can be reparameterized by arc length $s(t)=\int_{a}^{t}\left|\alpha^{\prime}(u)\right| d$ to have unit speed/tangent.

Notice $s^{\prime}(t)=\frac{d s}{d t}=\left|\alpha^{\prime}(t)\right|>0$ by def s, FTC, and regularity. To show s is strictly increasing, assume for contradiction $\exists x<y$ s.t. $s(x) \geq s(y)$.

Prove: If α is a differentiable curve that is regular then α can be reparameterized by arc length $s(t)=\int_{a}^{t}\left|\alpha^{\prime}(u)\right| d$ to have unit speed/tangent.

Notice $s^{\prime}(t)=\frac{d s}{d t}=\left|\alpha^{\prime}(t)\right|>0$ by def s, FTC, and regularity. To show s is strictly increasing, assume for contradiction $\exists x<y$ s.t. $s(x) \geq s(y)$. By the mean value theorem, $\exists c \in(x, y)$ interval so that $s^{\prime}(c)=\frac{s(y)-s(x)}{y-x}$

Prove: If α is a differentiable curve that is regular then α can be reparameterized by arc length $s(t)=\int_{a}^{t}\left|\alpha^{\prime}(u)\right| d$ to have unit speed/tangent.

Notice $s^{\prime}(t)=\frac{d s}{d t}=\left|\alpha^{\prime}(t)\right|>0$ by def s, FTC, and regularity. To show s is strictly increasing, assume for contradiction $\exists x<y$ s.t. $s(x) \geq s(y)$. By the mean value theorem, $\exists c \in(x, y)$ interval so that $s^{\prime}(c)=\frac{s(y)-s(x)}{y-x} \leq 0$, contradicting $s^{\prime}(t)>0$. Thus $s(t)$ passes the horizontal line test and the inverse function $t(s)$ is a function as it passes the vertical line test.

Prove: If α is a differentiable curve that is regular then α can be reparameterized by arc length $s(t)=\int_{a}^{t}\left|\alpha^{\prime}(u)\right| d$ to have unit speed/tangent.
Notice $s^{\prime}(t)=\frac{d s}{d t}=\left|\alpha^{\prime}(t)\right|>0$ by def s, FTC, and regularity. To show s is strictly increasing, assume for contradiction $\exists x<y$ s.t. $s(x) \geq s(y)$. By the mean value theorem, $\exists c \in(x, y)$ interval so that $s^{\prime}(c)=\frac{s(y)-s(x)}{y-x} \leq 0$, contradicting $s^{\prime}(t)>0$. Thus $s(t)$ passes the horizontal line test and the inverse function $t(s)$ is a function as it passes the vertical line test. To reparameterize, let $\beta(\boldsymbol{s})=\alpha(t(s))$. To show we have a unit speed tangent, $\beta^{\prime}(s)=\alpha^{\prime}(t(s)) t^{\prime}(s)$ by chain rule.

Prove: If α is a differentiable curve that is regular then α can be reparameterized by arc length $s(t)=\int_{a}^{t}\left|\alpha^{\prime}(u)\right| d$ to have unit speed/tangent.
Notice $s^{\prime}(t)=\frac{d s}{d t}=\left|\alpha^{\prime}(t)\right|>0$ by def s, FTC, and regularity. To show s is strictly increasing, assume for contradiction $\exists x<y$ s.t. $s(x) \geq s(y)$. By the mean value theorem, $\exists c \in(x, y)$ interval so that $s^{\prime}(c)=\frac{s(y)-s(x)}{y-x} \leq 0$, contradicting $s^{\prime}(t)>0$. Thus $s(t)$ passes the horizontal line test and the inverse function $t(s)$ is a function as it passes the vertical line test. To reparameterize, let $\beta(\boldsymbol{s})=\alpha(t(s))$. To show we have a unit speed tangent, $\beta^{\prime}(s)=\alpha^{\prime}(t(s)) t^{\prime}(s)$ by chain rule. Then $\left|\beta^{\prime}(s)\right|=\left|\alpha^{\prime}(t(s))\right|\left|t^{\prime}(s)\right|=\frac{d s}{d t}(t(s)) \frac{d t}{d s}(s)=\frac{d s}{d t}(t(s))_{\left.\frac{d s}{d t} t(s)\right)}$ QED.
Typically we won't write down a closed form solution explicitly.

Frenet Frame: T in TNB

The unit tangent in the direction of motion is given a special name in differential geometry and its applications: T
$T(s)=\alpha^{\prime}(s)$
$T(t)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|} \frac{\text { velocity }}{\text { speed }}$ as we can think of $\frac{\alpha^{\prime}(t)}{\frac{d s}{d t}}$ as $\frac{d \alpha}{d t} \frac{d t}{d s}$

Differential Geometry and Physics of Tractrix

http://www.rudyrucker.com/transrealbooks/collectedessays/images/kaptauhand.jpg

- velocity, acceleration, jerk, and higher time derivatives
- speed and arc length
- TNB Frame, curvature and torsion

