Differential Geometry

theoretical and computational components intrinsic and extrinsic viewpoints numerous applications
4140 prereq of 2130 , coreq of 2240 [review of material]

```
Intro and Try it Out!
class activities
readings
```

- Effective Class Engagement 7.5\% attendance is required
- Effective ASULearn Engagement 7.5\%
- 7 Homeworks 30\%.

No late work, but lowest hw is dropped

- 2 Exams 40\%

No late work, but can revise lowest exam

- Final Research Presentation 15\%
- Work due start of class (can send it with another student), under my office door sometime before I leave for class, or even turn in on ASULearn if need be, but I prefer printed

$$
\begin{gathered}
\text { I } \begin{array}{c}
\mathrm{x}=\mathrm{a}(2 \sin t-\sin 2 t) \\
\mathrm{y}=\mathrm{a}(2 \cos t-\cos 2 t)
\end{array} \\
\text { PARAMETRIC } \\
\text { EQUATIONS }
\end{gathered}
$$

https://www.cafepress.com/+parametric_equations_postcards_package_of_8,790199315

with(Student[VectorCalculus]):

TNBFrame (<2*sin(t)-sin(2*t), $2 * \cos (t)-\cos (2 * t), 0>$, range $=0 . .3 *$ Pi, output=animation, scaling=constrained, axes=frame,frames=50);

$$
\begin{gathered}
\text { I } \begin{array}{c}
\mathrm{x}=\mathrm{a}(2 \sin t-\sin 2 t) \\
\mathrm{y}=\mathrm{a}(2 \cos t-\cos 2 t)
\end{array} \\
\text { PARAMETRIC } \\
\text { EQUATIONS }
\end{gathered}
$$

https://www.cafepress.com/+parametric_equations_postcards_package_of_8,790199315

with(Student[VectorCalculus]):

TNBFrame (<2*sin(t)-sin(2*t), $2 * \cos (t)-\cos (2 * t), 0>$, range $=0 . .3 *$ Pi, output=animation, scaling=constrained, axes=frame,frames=50);

Dr. Sarah

with(Student[VectorCalculus]):

TNBFrame ($<2 \star \sin (t)-\sin (2 * t), 2 \star \cos (t)-\cos (2 * t), 0>$, range $=0.3 *$ Pi, output=animation,
scaling=constrained, axes=frame,frames=50);
Compare and contrast these curves:

- $\alpha(t)=(\cos (t), \sin (t), t), t \in(0,2 \pi)$
- $\alpha(t)=(\cos (2 t), \sin (2 t), 2 t), t \in(0, \pi)$
- $\alpha(t)=(\cos (t),-\sin (t),-t), t \in(-2 \pi, 0)$

Prove that $\alpha(t)$ is a curve that is a constant speed straight line iff the acceleration is $\overrightarrow{0}$.

https://www.khanacademy.org/science/physics/one-dimensional-motion/

Why is a line the shortest distance path between 2 points?

Why is a line the shortest distance path between 2 points?

Intuition?

Prove that a line $I(t)$ is shorter than any other curve $\alpha(t)$ between \vec{p} and \vec{q}.

Why is a line the shortest distance path between 2 points?

Intuition?

Prove that a line $I(t)$ is shorter than any other curve $\alpha(t)$ between \vec{p} and \vec{q}.
After you have had a chance to review Calculus with Analytic Geometry III, you'll come back to this in the homework readings.

Where to Get Help

- Class
- Office hours before and after class
- Google Dr. Sarah for course calendar
- ASULearn need help from me private forum

I care about you and your success!

