
The Speed v of a Geodesic
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v = |α′(t)| = |~v |, T (t) = α′(t)
|α′(t)| =

α′(t)
v(t) so α′(t) = v(t)T (t)

α′′(t) = v ′(t)T (t) + v(t)T ′(t)
v ′(t): linear or tangential acceleration (tangential component of
acceleration vector)
For a geodesic, since we don’t feel any curvature in the tangent
plane—only normal to the surface— v ′(t)= 0 so v is constant.
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Recognizing Geodesics on Cylinder using ~κα, ~κn, ~κg
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x(u, v) = (cos(u), sin(u), v) Normal U to the surface?

~xu = (−sin(u), cos(u),0), ~xv = (0,0,1).
U = ~xu×~xv

|~xu×~xv | = (cos(u), sin(u),0)
Ex 1: α(t) = (cos(t), sin(t), sin(t)). Then
α′(t) = (−sin(t), cos(t), cos(t)) and the speed is

√
1 + cos2(t),

which is not constant, so α can’t possibly be a geodesic. Notice
that T (t) = ( −sin(t)√

1+cos2t
, cos(t)√

1+cos2(t)
, cos(t)√

1+cos2(t)
) and

~κ = T ′(t)√
1+cos2(t)

will require quotient rule or similar and certainly

felt by the bug because it is not only in the U direction
Ex 2: γ(t) = (cos(t), sin(t), t) Calculate ~κ = T ′(t)

|γ′(t)| and compare
with U to explain why it isn’t felt by the bug
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~xu = (−sin(u), cos(u),0), ~xv = (0,0,1).
U = ~xu×~xv

|~xu×~xv | = (cos(u), sin(u),0)

~κα (curve’s curvature vector): T ′(t)
|α′(t)|

~κn (normal curvature): projection of ~κα onto U = (U · ~κα)U
~κg (geodesic curvature): ~κα - ~κn
Ex 3: γ(t) = (cos(t), sin(t),0) is a geodesic.
γ′(t)
|γ′(t)| = T = (−sin(t), cos(t),0) (speed is 1).

~κ = T ′(t)
|γ′(t)| = (−cos(t),−sin(t),0) no TpM component, only U

Ex 4: γ(t) = (cos(0), sin(0), t) is a geodesic.
γ′(t)
|γ′(t)| = T = (0,0,1) and ~κ = (0,0,0) no TpM component nor U
component

Dr. Sarah Differential Geometry

http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf


Recognizing Geodesics on Cylinder using ~κα, ~κn, ~κg

Adapted http://pi.math.cornell.edu/˜henderson/courses/M4540-S12/11-DG-front+Ch1.pdf

~xu = (−sin(u), cos(u),0), ~xv = (0,0,1).
U = ~xu×~xv

|~xu×~xv | = (cos(u), sin(u),0)

~κα (curve’s curvature vector): T ′(t)
|α′(t)|

~κn (normal curvature): projection of ~κα onto U = (U · ~κα)U
~κg (geodesic curvature): ~κα - ~κn
Ex 3: γ(t) = (cos(t), sin(t),0) is a geodesic.
γ′(t)
|γ′(t)| = T = (−sin(t), cos(t),0) (speed is 1).

~κ = T ′(t)
|γ′(t)| = (−cos(t),−sin(t),0) no TpM component, only U

Ex 4: γ(t) = (cos(0), sin(0), t) is a geodesic.

γ′(t)
|γ′(t)| = T = (0,0,1) and ~κ = (0,0,0) no TpM component nor U
component

Dr. Sarah Differential Geometry

http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf


Recognizing Geodesics on Cylinder using ~κα, ~κn, ~κg

Adapted http://pi.math.cornell.edu/˜henderson/courses/M4540-S12/11-DG-front+Ch1.pdf

~xu = (−sin(u), cos(u),0), ~xv = (0,0,1).
U = ~xu×~xv

|~xu×~xv | = (cos(u), sin(u),0)

~κα (curve’s curvature vector): T ′(t)
|α′(t)|

~κn (normal curvature): projection of ~κα onto U = (U · ~κα)U
~κg (geodesic curvature): ~κα - ~κn
Ex 3: γ(t) = (cos(t), sin(t),0) is a geodesic.
γ′(t)
|γ′(t)| = T = (−sin(t), cos(t),0) (speed is 1).

~κ = T ′(t)
|γ′(t)| = (−cos(t),−sin(t),0) no TpM component, only U

Ex 4: γ(t) = (cos(0), sin(0), t) is a geodesic.
γ′(t)
|γ′(t)| = T = (0,0,1) and ~κ = (0,0,0) no TpM component nor U
component

Dr. Sarah Differential Geometry

http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf


Classifying Cylinder Geodesics Using α′′
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surface x(u, v) = (cos(u), sin(u), v)—two free variables u, v
~xu = (−sin(u), cos(u),0), ~xv = (0,0,1).
U = ~xu×~xv

|~xu×~xv | = (cos(u), sin(u),0)
curve on surface α(t) = (cos(u(t)), sin(u(t)), v(t))
α′(t) = (− sinu u′, cosu u′, v ′),
α′′(t) = (− sinu u′′ − cosu u′u′, cosu u′′ − sinu u′u′, v ′′)
α′′(t)tangential = (− sinu u′′, cosu u′′, v ′′)
so u′′ = 0 and v ′′ = 0 and u = at + a0, v = bt + b0
γ(t) = (cos(at + a0), sin(at + a0),bt + b0)
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Spherical Coordinates
geographical coordinates
x(u, v) = (r cosu cos v , r sinu cos v , r sin v)

role of coordinates: hold one constant and explain what
kind of curve the other gives, and then the reverse.

Differential Geometry and Its Applications by John Oprea

What is U?

~xu = (−r sinu cos v , r cosu cos v ,0)
~xv = (−r cosu sin v ,−r sinu sin v , r cos v)
xu × xv = (r2 cosu cos2 v , r2 sinu cos2 v , r2 cos v sin v)
= r2 cos v(cosu cos v , sinu cos v , sin v)
|xu × xv | = r2 cos v so U = (cosu cos v , sinu cos v , sin v)
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Spherical Coordinates

geographical coordinates
x(u, v) = (r cosu cos v , r sinu cos v , r sin v)
spherical coordinates
x(u, v) = (r cosu sin v , r sinu sin v , r cos v)
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Maple File on Geodesic and Normal Curvatures
adapted from David Henderson

~κα pink dashed thickness 1
~κn black solid thickness 2
~κg tan dashdot style thickness 4

The unit normal to the surface at a point is U = ~xu×~xv
|~xu×~xv |

If ~κα is the curvature vector for a curve α(t) on the surface
then the normal curvature is the projection onto U:

~κn = (U · ~κα)U
The geodesic curvature is what is felt by the bug (in the
tangent plane TpM):

~κg = ~κα − ~κn
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Geodesics on a Sphere are Great Circles
Let γ(s) be a geodesic on the geographic sphere. We’ll show it
must be a great circle. It has constant speed, so we can
reparameterize in s. From our computations, U = γ

r . Then

~0 = ~κγ − (~κγ · U)U = γ′′ − (γ′′ · U)U so
γ′′ = (γ′′ · U)U = (γ′′ · γr )

γ
r = 1

r2 (γ
′′ · γ)γ = 1

r2 (|γ′′||γ| cos θ)γ,
where θ is the angle between γ′′ and γ′. Taking the magnitude,
|γ′′| = 1

r2 |γ′′||γ|| cos θ||γ| = 1
r2 |γ′′|r | cos θ|r = |γ′′|| cos θ| so

| cos θ| = 1 and γ′′ and γ are parallel!
Moreover, γ′′ = T ′ = κN and γ = rU since U = γ

r , so κN and
rU are parallel. But N and U are both unit vectors so
U ′ = ±N ′ = ±(−κT + τB) and U ′ also equals γ′

r = T
r . But T

and B are perpendicular so T can’t have a B component. Thus
τ = 0 and |κ| = 1

r . We previously proved this was part of a
circle. The radius of the circle is the full r , i.e. a great circle on
the sphere.
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| cos θ| = 1 and γ′′ and γ are parallel!
Moreover, γ′′ = T ′ = κN and γ = rU since U = γ

r , so κN and
rU are parallel. But N and U are both unit vectors so
U ′ = ±N ′ = ±(−κT + τB) and U ′ also equals γ′

r = T
r . But T

and B are perpendicular so T can’t have a B component. Thus
τ = 0 and |κ| = 1

r . We previously proved this was part of a
circle. The radius of the circle is the full r , i.e. a great circle on
the sphere.
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