The Speed v of a Geodesic

Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf

The Speed v of a Geodesic

Adapted http://pi.math.cornell.edu/~henderson/courses/m4540-S12/11-DG-front+Ch1.pdf $v=\left|\alpha^{\prime}(t)\right|=|\vec{v}|, \quad T(t)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=\frac{\alpha^{\prime}(t)}{v(t)}$ so $\alpha^{\prime}(t)=v(t) T(t)$ $\alpha^{\prime \prime}(t)$

The Speed v of a Geodesic

Adapted http://pi.math. cornel1.edu/-henderson/courses/M4540-S12/11-DG-front+Ch1.pdf
$v=\left|\alpha^{\prime}(t)\right|=|\vec{v}|, \quad T(t)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=\frac{\alpha^{\prime}(t)}{v(t)}$ so $\alpha^{\prime}(t)=v(t) T(t)$
$\alpha^{\prime \prime}(t)=v^{\prime}(t) T(t)+v(t) T^{\prime}(t)$
$v^{\prime}(t)$: linear or tangential acceleration (tangential component of acceleration vector)
For a geodesic, since we don't feel any curvature in the tangent plane-only normal to the surface- $v^{\prime}(t)=0$ so v is constant.

Recognizing Geodesics on Cylinder using $\vec{\kappa}_{\alpha}, \vec{k}_{n}, \vec{k}_{g}$

Recognizing Geodesics on Cylinder using $\vec{\kappa}_{\alpha}, \vec{k}_{n}, \vec{k}_{g}$

Recognizing Geodesics on Cylinder using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{n}, \vec{\kappa}_{g}$

Recognizing Geodesics on Cylinder using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{n}, \vec{\kappa}_{g}$

Adapted http://pi.math. cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf
$x(u, v)=(\cos (u), \sin (u), v)$
Normal U to the surface?
$\vec{x}_{u}=(-\sin (u), \cos (u), 0), \vec{x}_{v}=(0,0,1)$.
$U=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|}=(\cos (u), \sin (u), 0)$
Ex 1: $\alpha(t)=(\cos (t), \sin (t), \sin (t))$. Then
$\alpha^{\prime}(t)=(-\sin (t), \cos (t), \cos (t))$ and the speed is $\sqrt{1+\cos ^{2}(t)}$, which is not constant, so α can't possibly be a geodesic. Notice that $T(t)=\left(\frac{-\sin (t)}{\sqrt{1+\cos ^{2} t}}, \frac{\cos (t)}{\sqrt{1+\cos ^{2}(t)}}, \frac{\cos (t)}{\sqrt{1+\cos ^{2}(t)}}\right)$

Recognizing Geodesics on Cylinder using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{n}, \vec{\kappa}_{g}$

$x(u, v)=(\cos (u), \sin (u), v)$
Normal U to the surface?
$\vec{x}_{u}=(-\sin (u), \cos (u), 0), \vec{x}_{v}=(0,0,1)$.
$U=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|}=(\cos (u), \sin (u), 0)$
Ex 1: $\alpha(t)=(\cos (t), \sin (t), \sin (t))$. Then
$\alpha^{\prime}(t)=(-\sin (t), \cos (t), \cos (t))$ and the speed is $\sqrt{1+\cos ^{2}(t)}$, which is not constant, so α can't possibly be a geodesic. Notice that $T(t)=\left(\frac{-\sin (t)}{\sqrt{1+\cos ^{2} t}}, \frac{\cos (t)}{\sqrt{1+\cos ^{2}(t)}}, \frac{\cos (t)}{\sqrt{1+\cos ^{2}(t)}}\right)$ and
$\vec{\kappa}=\frac{T^{\prime}(t)}{\sqrt{1+\cos ^{2}(t)}}$ will require quotient rule or similar and certainly
felt by the bug because it is not only in the U direction

Recognizing Geodesics on Cylinder using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{n}, \vec{\kappa}_{g}$

$x(u, v)=(\cos (u), \sin (u), v)$
Normal U to the surface?
$\vec{x}_{u}=(-\sin (u), \cos (u), 0), \vec{x}_{v}=(0,0,1)$.
$U=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|}=(\cos (u), \sin (u), 0)$
Ex 1: $\alpha(t)=(\cos (t), \sin (t), \sin (t))$. Then
$\alpha^{\prime}(t)=(-\sin (t), \cos (t), \cos (t))$ and the speed is $\sqrt{1+\cos ^{2}(t)}$, which is not constant, so α can't possibly be a geodesic. Notice that $T(t)=\left(\frac{-\sin (t)}{\sqrt{1+\cos ^{2} t}}, \frac{\cos (t)}{\sqrt{1+\cos ^{2}(t)}}, \frac{\cos (t)}{\sqrt{1+\cos ^{2}(t)}}\right)$ and
$\vec{\kappa}=\frac{T^{\prime}(t)}{\sqrt{1+\cos ^{2}(t)}}$ will require quotient rule or similar and certainly felt by the bug because it is not only in the U direction Ex 2: $\gamma(t)=(\cos (t), \sin (t), t)$ Calculate $\vec{\kappa}=\frac{T^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}$ and compare with U to explain why it isn't felt by the bug

Recognizing Geodesics on Cylinder using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{n}, \vec{\kappa}_{g}$

Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf
$\vec{x}_{u}=(-\sin (u), \cos (u), 0), \vec{x}_{v}=(0,0,1)$.
$U=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|}=(\cos (u), \sin (u), 0)$
$\vec{\kappa}_{\alpha}$ (curve's curvature vector): $\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$
\vec{k}_{n} (normal curvature): projection of \vec{k}_{α} onto $U=\left(U \cdot \vec{\kappa}_{\alpha}\right) U$
$\vec{\kappa}_{g}$ (geodesic curvature): $\vec{\kappa}_{\alpha}-\vec{\kappa}_{n}$
Ex 3: $\gamma(t)=(\cos (t), \sin (t), 0)$ is a geodesic.
$\frac{\gamma^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}=T=(-\sin (t), \cos (t), 0)$ (speed is 1$)$.
$\vec{\kappa}=\frac{T^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}=(-\cos (t),-\sin (t), 0)$ no $T_{p} M$ component, only U

Recognizing Geodesics on Cylinder using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{n}, \vec{\kappa}_{g}$

$\vec{x}_{u}=(-\sin (u), \cos (u), 0), \vec{x}_{v}=(0,0,1)$.
$U=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|}=(\cos (u), \sin (u), 0)$
$\vec{\kappa}_{\alpha}$ (curve's curvature vector): $\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$
$\vec{\kappa}_{n}$ (normal curvature): projection of $\vec{\kappa}_{\alpha}$ onto $U=\left(U \cdot \vec{\kappa}_{\alpha}\right) U$
$\vec{\kappa}_{g}$ (geodesic curvature): $\vec{\kappa}_{\alpha}-\vec{\kappa}_{n}$
Ex 3: $\gamma(t)=(\cos (t), \sin (t), 0)$ is a geodesic.
$\frac{\gamma^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}=T=(-\sin (t), \cos (t), 0)$ (speed is 1$)$.
$\vec{\kappa}=\frac{T^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}=(-\cos (t),-\sin (t), 0)$ no $T_{p} M$ component, only U
Ex 4: $\gamma(t)=(\cos (0), \sin (0), t)$ is a geodesic.

Recognizing Geodesics on Cylinder using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{n}, \vec{\kappa}_{g}$

$\vec{x}_{u}=(-\sin (u), \cos (u), 0), \vec{x}_{v}=(0,0,1)$.
$U=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|}=(\cos (u), \sin (u), 0)$
$\vec{\kappa}_{\alpha}$ (curve's curvature vector): $\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$
$\vec{\kappa}_{n}$ (normal curvature): projection of $\vec{\kappa}_{\alpha}$ onto $U=\left(U \cdot \vec{\kappa}_{\alpha}\right) U$
$\vec{\kappa}_{g}$ (geodesic curvature): $\vec{\kappa}_{\alpha}-\vec{\kappa}_{n}$
Ex 3: $\gamma(t)=(\cos (t), \sin (t), 0)$ is a geodesic.
$\frac{\gamma^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}=T=(-\sin (t), \cos (t), 0)$ (speed is 1$)$.
$\vec{\kappa}=\frac{T^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}=(-\cos (t),-\sin (t), 0)$ no $T_{p} M$ component, only U
Ex 4: $\gamma(t)=(\cos (0), \sin (0), t)$ is a geodesic.
$\frac{\gamma^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}=T=(0,0,1)$ and $\vec{\kappa}=(0,0,0)$ no $T_{p} M$ component nor U component

Classifying Cylinder Geodesics Using $\alpha^{\prime \prime}$

Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf surface $x(u, v)=(\cos (u), \sin (u), v)$-two free variables u, v $\vec{x}_{u}=(-\sin (u), \cos (u), 0), \vec{x}_{v}=(0,0,1)$. $U=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|}=(\cos (u), \sin (u), 0)$
curve on surface $\alpha(t)=(\cos (u(t)), \sin (u(t)), v(t))$
$\alpha^{\prime}(t)=\left(-\sin u u^{\prime}, \cos u u^{\prime}, v^{\prime}\right)$,
$\alpha^{\prime \prime}(t)=\left(-\sin u u^{\prime \prime}-\cos u u^{\prime} u^{\prime}, \cos u u^{\prime \prime}-\sin u u^{\prime} u^{\prime}, v^{\prime \prime}\right)$
$\alpha^{\prime \prime}(t)_{\text {tangential }}=\left(-\sin u u^{\prime \prime}, \cos u u^{\prime \prime}, v^{\prime \prime}\right)$
so $u^{\prime \prime}=0$ and $v^{\prime \prime}=0$ and $u=a t+a_{0}, v=b t+b_{0}$
$\gamma(t)=\left(\cos \left(a t+a_{0}\right), \sin \left(a t+a_{0}\right), b t+b_{0}\right)$

Spherical Coordinates

geographical coordinates
$\mathbf{x}(u, v)=(r \cos u \cos v, r \sin u \cos v, r \sin v)$

- role of coordinates: hold one constant and explain what kind of curve the other gives, and then the reverse.

Differential Geometry and Its Applications by John Oprea

- What is U ?

Spherical Coordinates

geographical coordinates
$\mathbf{x}(u, v)=(r \cos u \cos v, r \sin u \cos v, r \sin v)$

- role of coordinates: hold one constant and explain what kind of curve the other gives, and then the reverse.

Differential Geometry and Its Applications by John Oprea

- What is U ?

$$
\begin{aligned}
& \vec{x}_{u}=(-r \sin u \cos v, r \cos u \cos v, 0) \\
& \vec{x}_{v}=(-r \cos u \sin v,-r \sin u \sin v, r \cos v)
\end{aligned}
$$

Spherical Coordinates

geographical coordinates
$\mathbf{x}(u, v)=(r \cos u \cos v, r \sin u \cos v, r \sin v)$

- role of coordinates: hold one constant and explain what kind of curve the other gives, and then the reverse.

Differential Geometry and Its Applications by John Oprea

- What is U ?
$\vec{x}_{u}=(-r \sin u \cos v, r \cos u \cos v, 0)$
$\vec{x}_{v}=(-r \cos u \sin v,-r \sin u \sin v, r \cos v)$
$x_{u} \times x_{v}=\left(r^{2} \cos u \cos ^{2} v, r^{2} \sin u \cos ^{2} v, r^{2} \cos v \sin v\right)$
$=r^{2} \cos v(\cos u \cos v, \sin u \cos v, \sin v)$

Spherical Coordinates

geographical coordinates
$\mathbf{x}(u, v)=(r \cos u \cos v, r \sin u \cos v, r \sin v)$

- role of coordinates: hold one constant and explain what kind of curve the other gives, and then the reverse.

Differential Geometry and Its Applications by John Oprea

- What is U ?

$$
\begin{aligned}
& \vec{x}_{u}=(-r \sin u \cos v, r \cos u \cos v, 0) \\
& \vec{x}_{v}=(-r \cos u \sin v,-r \sin u \sin v, r \cos v) \\
& x_{u} \times x_{v}=\left(r^{2} \cos u \cos ^{2} v, r^{2} \sin u \cos ^{2} v, r^{2} \cos v \sin v\right) \\
& =r^{2} \cos v(\cos u \cos v, \sin u \cos v, \sin v) \\
& \left|x_{u} \times x_{v}\right|=r^{2} \cos v \operatorname{so} U=(\cos u \cos v, \sin u \cos v, \sin v)
\end{aligned}
$$

Spherical Coordinates

geographical coordinates
$\mathbf{x}(u, v)=(r \cos u \cos v, r \sin u \cos v, r \sin v)$
spherical coordinates
$\mathbf{x}(u, v)=(r \cos u \sin v, r \sin u \sin v, r \cos v)$

Maple File on Geodesic and Normal Curvatures

 adapted from David Henderson\vec{k}_{α} pink dashed thickness 1
$\vec{\kappa}_{n}$ black solid thickness 2
\vec{k}_{g} tan dashdot style thickness 4

- The unit normal to the surface at a point is $U=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left|\vec{x}_{u} \times \vec{x}_{v}\right|}$
- If $\vec{\kappa}_{\alpha}$ is the curvature vector for a curve $\alpha(t)$ on the surface then the normal curvature is the projection onto U :

$$
\vec{\kappa}_{n}=\left(U \cdot \vec{\kappa}_{\alpha}\right) U
$$

- The geodesic curvature is what is felt by the bug (in the tangent plane $T_{p} M$):

$$
\vec{\kappa}_{g}=\vec{\kappa}_{\alpha}-\vec{\kappa}_{n}
$$

Geodesics on a Sphere are Great Circles

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in s. From our computations, $U=\frac{\gamma}{r}$. Then

Geodesics on a Sphere are Great Circles

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in s. From our computations, $U=\frac{\gamma}{r}$. Then $\overrightarrow{0}=\vec{\kappa}_{\gamma}-\left(\vec{\kappa}_{\gamma} \cdot U\right) U=\gamma^{\prime \prime}-\left(\gamma^{\prime \prime} \cdot U\right) U$ so $\gamma^{\prime \prime}=\left(\gamma^{\prime \prime} \cdot \boldsymbol{U}\right) U=$

Geodesics on a Sphere are Great Circles

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in s. From our computations, $U=\frac{\gamma}{r}$. Then $\overrightarrow{0}=\vec{\kappa}_{\gamma}-\left(\vec{\kappa}_{\gamma} \cdot U\right) U=\gamma^{\prime \prime}-\left(\gamma^{\prime \prime} \cdot U\right) U$ so $\gamma^{\prime \prime}=\left(\gamma^{\prime \prime} \cdot U\right) U=\left(\gamma^{\prime \prime} \cdot \frac{\gamma}{r}\right) \frac{\gamma}{r}=\frac{1}{r^{2}}\left(\gamma^{\prime \prime} \cdot \gamma\right) \gamma=\frac{1}{r^{2}}\left(\left|\gamma^{\prime \prime}\right||\gamma| \cos \theta\right) \gamma$, where θ is the angle between $\gamma^{\prime \prime}$ and γ^{\prime}.

Geodesics on a Sphere are Great Circles

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in s. From our computations, $U=\frac{\gamma}{r}$. Then $\overrightarrow{0}=\vec{\kappa}_{\gamma}-\left(\vec{\kappa}_{\gamma} \cdot U\right) U=\gamma^{\prime \prime}-\left(\gamma^{\prime \prime} \cdot U\right) U$ so $\gamma^{\prime \prime}=\left(\gamma^{\prime \prime} \cdot \boldsymbol{U}\right) U=\left(\gamma^{\prime \prime} \cdot \frac{\gamma}{r}\right) \frac{\gamma}{r}=\frac{1}{r^{2}}\left(\gamma^{\prime \prime} \cdot \gamma\right) \gamma=\frac{1}{r^{2}}\left(\left|\gamma^{\prime \prime}\right||\gamma| \cos \theta\right) \gamma$, where θ is the angle between $\gamma^{\prime \prime}$ and γ^{\prime}. Taking the magnitude, $\left|\gamma^{\prime \prime}\right|=\frac{1}{r^{2}}\left|\gamma^{\prime \prime}\right||\gamma||\cos \theta||\gamma|$

Geodesics on a Sphere are Great Circles

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in s. From our computations, $U=\frac{\gamma}{r}$. Then $\overrightarrow{0}=\vec{\kappa}_{\gamma}-\left(\vec{\kappa}_{\gamma} \cdot U\right) U=\gamma^{\prime \prime}-\left(\gamma^{\prime \prime} \cdot U\right) U$ so $\gamma^{\prime \prime}=\left(\gamma^{\prime \prime} \cdot \boldsymbol{U}\right) U=\left(\gamma^{\prime \prime} \cdot \frac{\gamma}{r}\right)_{r}^{\gamma}=\frac{1}{r^{2}}\left(\gamma^{\prime \prime} \cdot \gamma\right) \gamma=\frac{1}{r^{2}}\left(\left|\gamma^{\prime \prime}\right||\gamma| \cos \theta\right) \gamma$, where θ is the angle between $\gamma^{\prime \prime}$ and γ^{\prime}. Taking the magnitude, $\left|\gamma^{\prime \prime}\right|=\frac{1}{r^{2}}\left|\gamma^{\prime \prime}\right||\gamma||\cos \theta||\gamma|=\frac{1}{r^{2}}\left|\gamma^{\prime \prime}\right| r|\cos \theta| r=\left|\gamma^{\prime \prime}\right||\cos \theta|$ so $|\cos \theta|=1$ and $\gamma^{\prime \prime}$ and γ are paralle!!
Moreover,

Geodesics on a Sphere are Great Circles

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in s. From our computations, $U=\frac{\gamma}{r}$. Then $\overrightarrow{0}=\vec{\kappa}_{\gamma}-\left(\vec{\kappa}_{\gamma} \cdot U\right) U=\gamma^{\prime \prime}-\left(\gamma^{\prime \prime} \cdot U\right) U$ so $\gamma^{\prime \prime}=\left(\gamma^{\prime \prime} \cdot \boldsymbol{U}\right) U=\left(\gamma^{\prime \prime} \cdot \frac{\gamma}{r}\right) \frac{\gamma}{r}=\frac{1}{r^{2}}\left(\gamma^{\prime \prime} \cdot \gamma\right) \gamma=\frac{1}{r^{2}}\left(\left|\gamma^{\prime \prime}\right||\gamma| \cos \theta\right) \gamma$, where θ is the angle between $\gamma^{\prime \prime}$ and γ^{\prime}. Taking the magnitude, $\left|\gamma^{\prime \prime}\right|=\frac{1}{r^{2}}\left|\gamma^{\prime \prime}\right||\gamma||\cos \theta||\gamma|=\frac{1}{r^{2}}\left|\gamma^{\prime \prime}\right| r|\cos \theta| r=\left|\gamma^{\prime \prime}\right||\cos \theta|$ so $|\cos \theta|=1$ and $\gamma^{\prime \prime}$ and γ are parallel!
Moreover, $\gamma^{\prime \prime}=T^{\prime}=\kappa N$ and $\gamma=r U$ since $U=\frac{\gamma}{r}$, so κN and $r U$ are parallel. But N and U are both unit vectors so $U^{\prime}= \pm N^{\prime}= \pm(-\kappa T+\tau B)$ and U^{\prime} also equals $\frac{\gamma^{\prime}}{r}=\frac{T}{r}$. But T and B are perpendicular so T can't have a B component. Thus $\tau=0$ and $|\kappa|=\frac{1}{r}$. We previously proved this was part of a circle. The radius of the circle is the full r, i.e. a great circle on the sphere.

