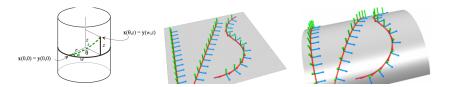
The Speed *v* of a Geodesic

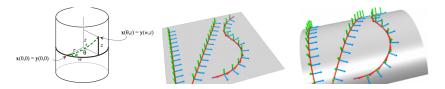


Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf

イロト イポト イヨト イヨト

ъ

The Speed v of a Geodesic

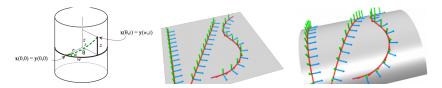


Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Chl.pdf $\mathbf{v} = |\alpha'(t)| = |\vec{\mathbf{v}}|, \quad T(t) = \frac{\alpha'(t)}{|\alpha'(t)|} = \frac{\alpha'(t)}{\mathbf{v}(t)} \text{ so } \alpha'(t) = \mathbf{v}(t)T(t)$ $\alpha''(t)$

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

The Speed v of a Geodesic



Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf $\mathbf{v} = |\alpha'(t)| = |\vec{\mathbf{v}}|, \quad T(t) = \frac{\alpha'(t)}{|\alpha'(t)|} = \frac{\alpha'(t)}{\mathbf{v}(t)} \text{ so } \alpha'(t) = \mathbf{v}(t)T(t)$ $\alpha''(t) = \mathbf{v}'(t)T(t) + \mathbf{v}(t)T'(t)$

v'(t): linear or tangential acceleration (tangential component of acceleration vector)

For a geodesic, since we don't feel any curvature in the tangent plane—only normal to the surface—v'(t)=0 so v is constant.

ヘロト 人間 ト ヘヨト ヘヨト

 $\mathbf{x}(0,z) = \mathbf{y}(w,z)$

 $\mathbf{x}(0,z) = \mathbf{y}(w,z)$

Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf x(u, v) = (cos(u), sin(u), v) Normal U to the surface? $\vec{x}_u = (-sin(u), cos(u), 0), \vec{x}_v = (0, 0, 1).$ $U = \frac{\vec{x}_u \times \vec{x}_v}{|\vec{x}_u \times \vec{x}_v|} = (cos(u), sin(u), 0)$ **Ex 1**: $\alpha(t) = (cos(t), sin(t), sin(t)).$

 $\mathbf{x}(0,z) = \mathbf{y}(w,z)$

Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-512/11-DG-front+Ch1.pdf x(u, v) = (cos(u), sin(u), v) Normal U to the surface? $\vec{x}_u = (-sin(u), cos(u), 0), \vec{x}_v = (0, 0, 1).$ $U = \frac{\vec{x}_u \times \vec{x}_v}{|\vec{x}_u \times \vec{x}_v|} = (cos(u), sin(u), 0)$ **Ex 1**: $\alpha(t) = (cos(t), sin(t), sin(t)).$ Then $\alpha'(t) = (-sin(t), cos(t), cos(t))$ and the speed is $\sqrt{1 + cos^2(t)}$, which is not constant, so α can't possibly be a geodesic.

x(8,c) = y(w,c)

Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf x(u, v) = (cos(u), sin(u), v) Normal U to the surface? $\vec{x}_{u} = (-sin(u), cos(u), 0), \vec{x}_{v} = (0, 0, 1).$ $U = \frac{\vec{x}_{u} \times \vec{x}_{v}}{|\vec{x}_{u} \times \vec{x}_{v}|} = (cos(u), sin(u), 0)$ **Ex 1**: $\alpha(t) = (cos(t), sin(t), sin(t))$. Then $\alpha'(t) = (-sin(t), cos(t), cos(t))$ and the speed is $\sqrt{1 + cos^{2}(t)}$, which is not constant, so α can't possibly be a geodesic. Notice that $T(t) = (\frac{-sin(t)}{\sqrt{1 + cos^{2}t}}, \frac{cos(t)}{\sqrt{1 + cos^{2}(t)}}, \frac{cos(t)}{\sqrt{1 + cos^{2}(t)}})$

イロト イポト イヨト イヨト 三日

18.0-year

Adapted http://pi.math.cornell.edu/~henderson ourses/M4540-S12/11-DG-front+Ch1.pdf Normal U to the surface? x(u, v) = (cos(u), sin(u), v) $\vec{x}_{u} = (-\sin(u), \cos(u), 0), \vec{x}_{v} = (0, 0, 1).$ $\boldsymbol{U} = \frac{\vec{x}_{u} \times \vec{x}_{v}}{|\vec{x}_{v} \times \vec{x}_{v}|} = (\cos(u), \sin(u), 0)$ **Ex 1**: $\alpha(t) = (\cos(t), \sin(t), \sin(t))$. Then $\alpha'(t) = (-\sin(t), \cos(t), \cos(t))$ and the speed is $\sqrt{1 + \cos^2(t)}$, which is not constant, so α can't possibly be a geodesic. Notice that $T(t) = \left(\frac{-\sin(t)}{\sqrt{1+\cos^2 t}}, \frac{\cos(t)}{\sqrt{1+\cos^2(t)}}, \frac{\cos(t)}{\sqrt{1+\cos^2(t)}}\right)$ and $\vec{\kappa} = \frac{T'(t)}{\sqrt{1+\cos^2(t)}}$ will require quotient rule or similar and certainly felt by the bug because it is not only in the U direction

<ロト < 同ト < 回ト < 回ト = 三

1843-3(wa)

ourses/M4540-S12/11-DG-front+Ch1.pdf Adapted http://pi.ma l.edu/~henderson x(u, v) = (cos(u), sin(u), v)Normal U to the surface? $\vec{x}_{u} = (-\sin(u), \cos(u), 0), \vec{x}_{v} = (0, 0, 1).$ $\boldsymbol{U} = \frac{\vec{x}_{u} \times \vec{x}_{v}}{|\vec{x}_{v} \times \vec{x}_{v}|} = (\cos(u), \sin(u), 0)$ **Ex 1**: $\alpha(t) = (\cos(t), \sin(t), \sin(t))$. Then $\alpha'(t) = (-\sin(t), \cos(t), \cos(t))$ and the speed is $\sqrt{1 + \cos^2(t)}$, which is not constant, so α can't possibly be a geodesic. Notice that $T(t) = \left(\frac{-\sin(t)}{\sqrt{1+\cos^2 t}}, \frac{\cos(t)}{\sqrt{1+\cos^2(t)}}, \frac{\cos(t)}{\sqrt{1+\cos^2(t)}}\right)$ and $\vec{\kappa} = \frac{T'(t)}{\sqrt{1+\cos^2(t)}}$ will require quotient rule or similar and certainly felt by the bug because it is not only in the U direction **Ex 2**: $\gamma(t) = (cos(t), sin(t), t)$ Calculate $\vec{\kappa} = \frac{T'(t)}{|\gamma'(t)|}$ and compare with U to explain why it isn't felt by the bug $\langle u \rangle$

Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf

$$\vec{x}_{u} = (-sin(u), cos(u), 0), \vec{x}_{v} = (0, 0, 1).$$

 $U = \frac{\vec{x}_{u} \times \vec{x}_{v}}{|\vec{x}_{u} \times \vec{x}_{v}|} = (cos(u), sin(u), 0)$
 $\vec{\kappa}_{\alpha}$ (curve's curvature vector): $\frac{T'(t)}{|\alpha'(t)|}$
 $\vec{\kappa}_{n}$ (normal curvature): projection of $\vec{\kappa}_{\alpha}$ onto $U = (U \cdot \vec{\kappa}_{\alpha})U$
 $\vec{\kappa}_{g}$ (geodesic curvature): $\vec{\kappa}_{\alpha} - \vec{\kappa}_{n}$
Ex 3: $\gamma(t) = (cos(t), sin(t), 0)$ is a geodesic.
 $\frac{\gamma'(t)}{|\gamma'(t)|} = T = (-sin(t), cos(t), 0)$ (speed is 1).
 $\vec{\kappa} = \frac{T'(t)}{|\gamma'(t)|} = (-cos(t), -sin(t), 0)$ no $T_{p}M$ component, only U

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

100) - 9(02) .edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf Adapted http://pi.math.cornel $\vec{x}_{u} = (-sin(u), cos(u), 0), \vec{x}_{v} = (0, 0, 1).$ $U = \frac{\vec{x}_{u} \times \vec{x}_{v}}{|\vec{x}_{v} \times \vec{x}_{v}|} = (\cos(u), \sin(u), 0)$ $\vec{\kappa}_{\alpha}$ (curve's curvature vector): $\frac{T'(t)}{|\alpha'(t)|}$ $\vec{\kappa}_{\alpha}$ (normal curvature): projection of $\vec{\kappa}_{\alpha}$ onto $U = (U \cdot \vec{\kappa}_{\alpha})U$ $\vec{\kappa}_{\alpha}$ (geodesic curvature): $\vec{\kappa}_{\alpha}$ - $\vec{\kappa}_{n}$ **Ex 3**: $\gamma(t) = (cos(t), sin(t), 0)$ is a geodesic. $\frac{\gamma'(t)}{|\gamma'(t)|} = T = (-sin(t), cos(t), 0)$ (speed is 1). $\vec{\kappa} = \frac{T'(t)}{|\gamma'(t)|} = (-\cos(t), -\sin(t), 0)$ no T_pM component, only U **Ex 4**: $\gamma(t) = (cos(0), sin(0), t)$ is a geodesic.

<ロ> (四) (四) (三) (三) (三)

L.K

JUL &

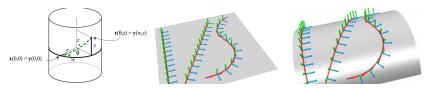
 $\langle \cdot \rangle$

Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Chl.pdf

$$\vec{x}_{u} = (-sin(u), cos(u), 0), \vec{x}_{v} = (0, 0, 1).$$

 $U = \frac{\vec{x}_{u} \times \vec{x}_{v}}{|\vec{x}_{u} \times \vec{x}_{v}|} = (cos(u), sin(u), 0)$
 $\vec{\kappa}_{\alpha}$ (curve's curvature vector): $\frac{T'(t)}{|\alpha'(t)|}$
 $\vec{\kappa}_{n}$ (normal curvature): projection of $\vec{\kappa}_{\alpha}$ onto $U = (U \cdot \vec{\kappa}_{\alpha})U$
 $\vec{\kappa}_{g}$ (geodesic curvature): $\vec{\kappa}_{\alpha} - \vec{\kappa}_{n}$
Ex 3: $\gamma(t) = (cos(t), sin(t), 0)$ is a geodesic.
 $\frac{\gamma'(t)}{|\gamma'(t)|} = T = (-sin(t), cos(t), 0)$ (speed is 1).
 $\vec{\kappa} = \frac{T'(t)}{|\gamma'(t)|} = (-cos(0), sin(0), t)$ is a geodesic.
 $\frac{\gamma'(t)}{|\gamma'(t)|} = T = (0, 0, 1)$ and $\vec{\kappa} = (0, 0, 0)$ no $T_{p}M$ component nor U
component

Classifying Cylinder Geodesics Using α''

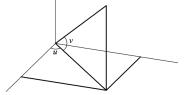


Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-S12/11-DG-front+Ch1.pdf surface x(u, v) = (cos(u), sin(u), v)—two free variables u, v $\vec{x}_{\mu} = (-\sin(u), \cos(u), 0), \vec{x}_{\nu} = (0, 0, 1).$ $U = \frac{\vec{x}_u \times \vec{x}_v}{|\vec{x}_v \times \vec{x}_v|} = (\cos(u), \sin(u), 0)$ curve on surface $\alpha(t) = (\cos(u(t)), \sin(u(t)), v(t))$ $\alpha'(t) = (-\sin u \ u', \cos u \ u', v'),$ $\alpha''(t) = (-\sin u \ u'' - \cos u \ u'u', \cos u \ u'' - \sin u \ u'u', v'')$ $\alpha''(t)_{\text{tangential}} = (-\sin u \ u'', \cos u \ u'', v'')$ so u'' = 0 and v'' = 0 and $u = at + a_0$, $v = bt + b_0$ $\gamma(t) = (\cos(at + a_0), \sin(at + a_0), bt + b_0)$

geographical coordinates

 $\mathbf{x}(u, v) = (r \cos u \cos v, r \sin u \cos v, r \sin v)$

• role of coordinates: hold one constant and explain what kind of curve the other gives, and then the reverse.



Differential Geometry and Its Applications by John Oprea

• What is U?

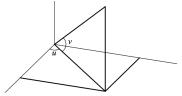
・ 同 ト ・ ヨ ト ・ ヨ ト …

3

geographical coordinates

 $\mathbf{x}(u, v) = (r \cos u \cos v, r \sin u \cos v, r \sin v)$

• role of coordinates: hold one constant and explain what kind of curve the other gives, and then the reverse.



Differential Geometry and Its Applications by John Oprea

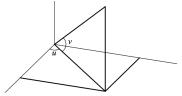
• What is U? $\vec{x}_u = (-r \sin u \cos v, r \cos u \cos v, 0)$ $\vec{x}_v = (-r \cos u \sin v, -r \sin u \sin v, r \cos v)$

▲御♪ ▲ヨ♪ ▲ヨ♪ 三臣

geographical coordinates

 $\mathbf{x}(u, v) = (r \cos u \cos v, r \sin u \cos v, r \sin v)$

• role of coordinates: hold one constant and explain what kind of curve the other gives, and then the reverse.



Differential Geometry and Its Applications by John Oprea

• What is U?

$$\vec{x}_u = (-r \sin u \cos v, r \cos u \cos v, 0)$$

 $\vec{x}_v = (-r \cos u \sin v, -r \sin u \sin v, r \cos v)$
 $x_u \times x_v = (r^2 \cos u \cos^2 v, r^2 \sin u \cos^2 v, r^2 \cos v \sin v)$
 $= r^2 \cos v (\cos u \cos v, \sin u \cos v, \sin v)$

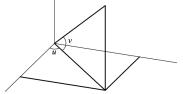
・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

geographical coordinates

 $\mathbf{X}(u, v) = (r \cos u \cos v, r \sin u \cos v, r \sin v)$

• role of coordinates: hold one constant and explain what kind of curve the other gives, and then the reverse.

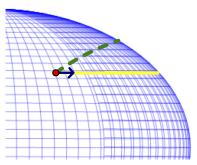


Differential Geometry and Its Applications by John Oprea

• What is U?

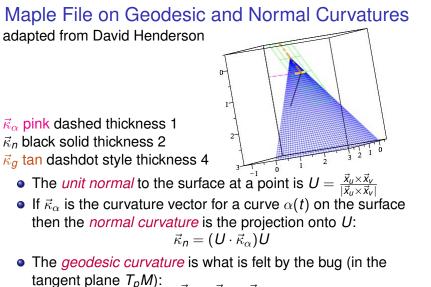
$$\vec{x}_u = (-r \sin u \cos v, r \cos u \cos v, 0)$$

 $\vec{x}_v = (-r \cos u \sin v, -r \sin u \sin v, r \cos v)$
 $x_u \times x_v = (r^2 \cos u \cos^2 v, r^2 \sin u \cos^2 v, r^2 \cos v \sin v)$
 $= r^2 \cos v (\cos u \cos v, \sin u \cos v, \sin v)$
 $|x_u \times x_v| = r^2 \cos v$ So $U = (\cos u \cos v, \sin u \cos v, \sin v)$



geographical coordinates $\mathbf{x}(u, v) = (r \cos u \cos v, r \sin u \cos v, r \sin v)$ spherical coordinates $\mathbf{x}(u, v) = (r \cos u \sin v, r \sin u \sin v, r \cos v)$

프 🕨 🗆 프



$$\vec{\kappa}_{g} = \vec{\kappa}_{\alpha} - \vec{\kappa}_{n}$$

Geodesics on a Sphere are Great Circles Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in *s*. From our computations, $U = \frac{\gamma}{r}$. Then

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in *s*. From our computations, $U = \frac{\gamma}{r}$. Then $\vec{0} = \vec{\kappa}_{\gamma} - (\vec{\kappa}_{\gamma} \cdot U)U = \gamma'' - (\gamma'' \cdot U)U$ so $\gamma'' = (\gamma'' \cdot U)U =$

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in *s*. From our computations, $U = \frac{\gamma}{r}$. Then $\vec{0} = \vec{\kappa}_{\gamma} - (\vec{\kappa}_{\gamma} \cdot U)U = \gamma'' - (\gamma'' \cdot U)U$ so $\gamma'' = (\gamma'' \cdot U)U = (\gamma'' \cdot \frac{\gamma}{r})\frac{\gamma}{r} = \frac{1}{r^2}(\gamma'' \cdot \gamma)\gamma = \frac{1}{r^2}(|\gamma''||\gamma|\cos\theta)\gamma$, where θ is the angle between γ'' and γ' .

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in *s*. From our computations, $U = \frac{\gamma}{r}$. Then $\vec{0} = \vec{\kappa}_{\gamma} - (\vec{\kappa}_{\gamma} \cdot U)U = \gamma'' - (\gamma'' \cdot U)U$ so $\gamma'' = (\gamma'' \cdot U)U = (\gamma'' \cdot \frac{\gamma}{r})\frac{\gamma}{r} = \frac{1}{r^2}(\gamma'' \cdot \gamma)\gamma = \frac{1}{r^2}(|\gamma''||\gamma||\cos\theta)\gamma$, where θ is the angle between γ'' and γ' . Taking the magnitude, $|\gamma''| = \frac{1}{r^2}|\gamma''||\gamma||\cos\theta||\gamma|$

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in *s*. From our computations, $U = \frac{\gamma}{r}$. Then $\vec{0} = \vec{\kappa}_{\gamma} - (\vec{\kappa}_{\gamma} \cdot U)U = \gamma'' - (\gamma'' \cdot U)U$ so $\gamma'' = (\gamma'' \cdot U)U = (\gamma'' \cdot \frac{\gamma}{r})\frac{\gamma}{r} = \frac{1}{r^2}(\gamma'' \cdot \gamma)\gamma = \frac{1}{r^2}(|\gamma''||\gamma||\cos\theta)\gamma$, where θ is the angle between γ'' and γ' . Taking the magnitude, $|\gamma''| = \frac{1}{r^2}|\gamma''||\gamma||\cos\theta||\gamma| = \frac{1}{r^2}|\gamma''|r|\cos\theta|r = |\gamma''||\cos\theta|$ so $|\cos\theta| = 1$ and γ'' and γ are parallel! Moreover,

Let $\gamma(s)$ be a geodesic on the geographic sphere. We'll show it must be a great circle. It has constant speed, so we can reparameterize in s. From our computations, $U = \frac{\gamma}{r}$. Then $\vec{0} = \vec{\kappa}_{\gamma} - (\vec{\kappa}_{\gamma} \cdot U)U = \gamma'' - (\gamma'' \cdot U)U$ so $\gamma'' = (\gamma'' \cdot U)U = (\gamma'' \cdot \frac{\gamma}{r})\frac{\gamma}{r} = \frac{1}{r^2}(\gamma'' \cdot \gamma)\gamma = \frac{1}{r^2}(|\gamma''||\gamma|\cos\theta)\gamma,$ where θ is the angle between γ'' and γ' . Taking the magnitude, $|\gamma''| = \frac{1}{r^2} |\gamma''| |\gamma| |\cos \theta| |\gamma| = \frac{1}{r^2} |\gamma''| r| \cos \theta |r| = |\gamma''| |\cos \theta| \text{ so}$ $|\cos \theta| = 1$ and γ'' and γ are parallel! Moreover, $\gamma'' = T' = \kappa N$ and $\gamma = rU$ since $U = \frac{\gamma}{r}$, so κN and rU are parallel. But N and U are both unit vectors so $U' = \pm N' = \pm (-\kappa T + \tau B)$ and U' also equals $\frac{\gamma'}{r} = \frac{T}{r}$. But T and B are perpendicular so T can't have a B component. Thus $\tau = 0$ and $|\kappa| = \frac{1}{r}$. We previously proved this was part of a circle. The radius of the circle is the full r, i.e. a great circle on the sphere.

<ロ> (四) (四) (三) (三) (三) (三)