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The Speed v of a Geodesic

X(00)=30.0) - % E

Adapted http://pi.math.corneu.edu/~hender/son/course/s/M4540—512/11—DG—front+ch1.pdf
v=lo/(t) =1V, T(t) =S =98 soa'(t) = v()T(1)
o'(t) = V(H)T(t)+ v(t) T'(¢)

v/(t): linear or tangential acceleration (tangential component of
acceleration vector)

For a geodesic, since we don’t feel any curvature in the tangent
plane—only normal to the surface— v/(f)= 0 so v is constant.
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Recognizing Geodesics on Cylinder using <, Kp, kg
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x(u,v) = (cos(u), sin(u), v) Normal U to the surface?
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Recognizing Geodesics on Cylinder using <, Kp, kg
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x(u,v) = (cos(u), sin(u), v) Normal U to the surface?
Xy = (—sin(u), cos(u), 0), X, = (0,0,1).

= &ﬁ% = (cos(u), sin(u), 0)

Ex 1: a(t) = (cos(t), sin(t), sin(t)).
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Recognizing Geodesics on Cylinder using <, Kp, kg
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x(u,v) = (cos(u), sin(u), v) Normal U to the surface?
Xy = (—sin(u), cos(u),0), X, = (0,0,1).

= |§Z§§Z\ = (cos(u), sin(u), 0)
Ex 1: a(t) = (cos(t), sin(t), sin(t)). Then
o/ (t) = (—sin(t), cos(t), cos(t)) and the speed is /1 + cos?(t),

which is not constant, so a can’t possibly be a geodesic.
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Recognizing Geodesms on Cylinder using K, Kn, Kg
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x(u,v) = (cos(u), sin(u), v) Normal U to the surface?
Xy = (—sin(u), cos(u), 0), X, = (0,0,1).
= |§Z§§Z\ = (cos(u), sin(u), 0)
Ex 1: a(t) = (cos(t), sin(t), sin(t)). Then
o/ (t) = (—sin(t), cos(t), cos(t)) and the speed is /1 + cos?(t),
which is not constant, so a can’t possibly be a geodesic. Notice

—sin(t) cos(t) cos(t)
that T(t) = (\/1-1-00521 /1+cos2(1)’ \/1+0032(t))
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Recognizing Geodesms on Cylinder using K, Kn, Kg
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x(u,v) = (cos(u), sin(u), v) Normal U to the surface?
Xy = (—sin(u), cos(u), 0), X, = (0,0,1).
= |§Z§§Z\ = (cos(u), sin(u), 0)
Ex 1: a(t) = (cos(t), sin(t), sin(t)). Then
o/ (t) = (—sin(t), cos(t), cos(t)) and the speed is /1 + cos?(t),
which is not constant, so a can’t possibly be a geodesic. Notice

—sin(t) cos(t) cos(1)
that T(t) = (\/1-1-00521 V1tcos?(t)’ \/1+0082(t)) and

will require quotient rule or similar and certainly

B __ T
1-+cos?(t)
felt by the bug because it is not only in the U direction
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Recognizing Geode3|cs on Cylinder using K, Kn, Kg
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x(u,v) = (cos(u), sin(u), v) Normal U to the surface?
Xy = (—sin(u), cos(u), 0), X, = (0,0,1).
= &ﬁ% = (cos(u), sin(u), 0)
Ex 1: a(t) = (cos(t), sin(t), sin(t)). Then
o/ (t) = (—sin(t), cos(t), cos(t)) and the speed is /1 + cos?(t),
which is not constant, so a can’t possibly be a geodesic. Notice

—sin(t) cos(t) cos(1)
that T(t) = (\/1-1-00521 V1tcos?(t)’ \/1+0082(t)) and

will require quotient rule or similar and certainly

B __ T
1-+cos?(t)
felt by the bug because it is not only in the U direction

Ex 2: y(t) = (cos(t), sin(t), t) Calculate & = 7 ((t))| and compare

with U to explain why it isn’t felt by the bug
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Recognizing Geodesics on Cylinder using <, Kp, kg
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Xy = (—sin(u), cos(u), 0), X, = (0,0,1).

= |§U§§:\ = (cos(u), sin(u),0)
/(1)

o (curve’s curvature vector): (0]
(normal curvature): prOJectlon of K, onto U = (U - R,)U
(geodesm curvature): K, - Kn
3: v(t) = (cos(t), sm(t), 0) is a geodesic.
lg ;| T = (—sin(t), cos(t),0) (speed is 1).

|§,/((f))‘ = (—cos(t), —sin(t),0) no T,M component, only U
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Recognizing Geodesics on Cylinder using <, Kp, kg

~—— Eg/% /
Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-512/11-DG-front+Chl.pdf

Xy = (—sin(u), cos(u), 0), X, = (0,0,1).

= |§U§§:\ = (cos(u), sin(u),0)
T/(t)

7'l

o (curve’s curvature vector):

Kn (normal curvature): prOJectl‘on tc)>|f Rqonto U= (U-R,)U

g (geodesic curvature): K, - Kp

Ex 3: v(t) = (cos(t), sin(t),0) is a geodesic.

g:g;' = T = (—sin(t), cos(t),0) (speed is 1).

Fé = |§,/(P‘ = (—cos(t), —sin(t),0) no T,M component, only U
4: +(t) = (cos(0), sin(0), t) is a geodesic.
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Recognizing Geodesms on Cylinder using K, Kn, Kg
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Xu—( sin(u), cos(u), 0), X, =(0,0,1).

= &“ij:‘ = (cos(u), sin(u),0)
/(1)

7'l

o (curve’s curvature vector):

o/ (D)]

Rn (normal curvature): projection of i, onto U = (U - R,)U
g (geodesic curvature): K, - Kp
Ex 3: v(t) = (cos(t), sin(t),0) is a geodesic.
Q,Eg' = T = (—sin(t), cos(t),0) (speed is 1).
/?5 = |T(P‘ = (—cos(t), —sin(t),0) no T,M component, only U

X 4: ~(t) = (cos(0), sin(0), t) is a geodesic.
| ;| =T =(0,0,1)and < = (0,0,0) no T,M component nor U
component
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Classifying Cylinder Geodesics Using o
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Adapted http://pi.math.cornell.edu/~henderson/courses/M4540-512/11-DG-front+Chl.pdf
surface x(u, v) = (cos(u), sin(u), v)—two free variables u, v
Xy = (—sin(u), cos(u),0), X, = (0,0,1).

= |§Z§§t\ = (cos(u), sin(u), 0)
curve on surface «(t) = (cos(u(t)), sin(u(t)), v(t))
o (t)=(—=sinu U, ,cosu U V'),
a'(t) = (—sinu U’ —cosu U'U,cosu U —sinu U'U,v")
O‘H(t)tangential = (—sinu U",cosu u",v")
sou’"=0and v/ =0and u = at+ ap, v = bt + by
~(t) = (cos(at + agp), sin(at + ap), bt + bp)
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Spherical Coordinates
geographical coordinates

X(u,Vv) = (rcosucosV,rsinucosV,rsin V)

@ role of coordinates: hold one constant and explain what
kind of curve the other gives, and then the reverse.

Differential Geometry and lts Applications by John Oprea

@ Whatis U?
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Spherical Coordinates
geographical coordinates

X(u,Vv) = (rcosucosV,rsinucosV,rsin V)

@ role of coordinates: hold one constant and explain what
kind of curve the other gives, and then the reverse.

Differential Geometry and lts Applications by John Oprea

@ Whatis U?
Xy = (—rsinucosV,rcosucosV,0)
Xy = (—rcosusinv,—rsinusin v, rcosV)
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Spherical Coordinates
geographical coordinates

X(u,Vv) = (rcosucosV,rsinucosV,rsin V)
@ role of coordinates: hold one constant and explain what
kind of curve the other gives, and then the reverse.

Differential Geometry and Its Applications by John Oprea
@ Whatis U?
Xy = (—rsinucosV,rcosucosV,0)
Xy = (—rcosusinv,—rsinusin Vv, rcos V)
Xy X Xy = (r? cos U cos? v, r? sin U cos® v, r? cos v sin V)
= r2 cos v(cos U cos V, sin U cos V, sin V)
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Spherical Coordinates
geographical coordinates

X(u,Vv) = (rcosucosV,rsinucosV,rsin V)
@ role of coordinates: hold one constant and explain what
kind of curve the other gives, and then the reverse.

Differential Geometry and Its Applications by John Oprea
@ Whatis U?
Xy = (—rsinucosV,rcosucosV,0)
Xy = (—rcosusinv,—rsinusin Vv, rcos V)
Xy X Xy = (r? cos U cos? v, r? sin U cos® v, r? cos v sin V)
= r2 cos v(cos U cos V, sin U cos V, sin V)
|Xy X Xy| = r?cos v s0 U = (cos U cos V, sin U cos V, sin V)
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Spherical Coordinates

geographical coordinates
X(u,v) = (rcosucosV,rsinucosV,rsinVv)
spherical coordinates

X(u,v) = (rcosusin v, rsinusin Vv, rcos V)
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Maple File on Geodesic and Normal Curvatures
adapted from David Henderson

K« pink dashed thickness 1
Kn black solid thickness 2
kg tan dashdot style thickness 4

XuX Xy

@ The unit normal to the surface at alpoint is U= X E]
@ If &, is the curvature vector for a curve «(t) on the surface
then the normal curvature is the projection onto U:
Rn=(U-Rs)U
@ The geodesic curvature is what is felt by the bug (in the
tangent plane ToM): .

K/g:K/a*R‘:n
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Geodesics on a Sphere are Great Circles

Let v(s) be a geodesic on the geographic sphere. We’ll show it
must be a great circle. It has constant speed, so we can
reparameterize in s. From our computations, U = 7. Then
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Geodesics on a Sphere are Great Circles

Let v(s) be a geodesic on the geographic sphere. We’ll show it
must be a great circle. It has constant speed, so we can
reparameterize in s. From our computations, U = 7. Then
0=R,—(R,-U)U=+"—("-U)Uso

,Y// — (,7// . U)U —
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Geodesics on a Sphere are Great Circles
Let v(s) be a geodesic on the geographic sphere. We’ll show it
must be a great circle. It has constant speed, so we can
reparameterize in s. From our computations, U = 7. Then
0=R,—(R,-U)U=+"—("-U)Uso
V=0 OU=0" DI =50 7)7 = & (1Y"|lyl cosB),
where 6 is the angle between +” and +'.
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Geodesics on a Sphere are Great Circles

Let v(s) be a geodesic on the geographic sphere. We’ll show it
must be a great circle. It has constant speed, so we can
reparameterize in s. From our computations, U = 7. Then
0=R,—(R,-U)U=+"—("-U)Uso

V=" OU=(0"-1)E = 50" 7)7 = % (17"l cos 0),
where 6 is the angle between ~” and +/. Taking the magnitude,
V' = 1" [17]] cos O] 1]
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Geodesics on a Sphere are Great Circles

Let v(s) be a geodesic on the geographic sphere. We’ll show it
must be a great circle. It has constant speed, so we can
reparameterize in s. From our computations, U = 7. Then
0=FR,—(Ry-U)U=+"—(v"-U)Uso

V=" OU=(0"-1)E = 50" 7)7 = % (17"l cos 0),
where 6 is the angle between ~” and +/. Taking the magnitude,
V' = 1[Il cosbl|y| = L1yl cosb|r = [7"|| cos 0] so
|cosf| =1 and v and ~ are parallel!

Moreover,
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Geodesics on a Sphere are Great Circles

Let v(s) be a geodesic on the geographic sphere. We’ll show it
must be a great circle. It has constant speed, so we can
reparameterize in s. From our computations, U = 7. Then
0=FR,—(Ry-U)U=+"—(v"-U)Uso

V=0 OU=("1T=%0" 7)7 = % ([7"ly] cos ),
where 6 is the angle between ~” and +/. Taking the magnitude,
V' = 1[Il cosbl|y| = L1yl cosb|r = [7"|| cos 0] so
|cosf| =1 and v and ~ are parallel!

Moreover, v = T" = kN and v = rU since U = 1, so kN and
rU are parallel. But N and U are both unit vectors so

U =+N =+(—xT +7B)and U also equals © = T. But T
and B are perpendicular so T can’t have a B component. Thus
r=0and |k| = 17 We previously proved this was part of a
circle. The radius of the circle is the full r, i.e. a great circle on
the sphere. [J
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