## 1.3: TNB: Unit Tangent $T$ (Pointer Finger)

Example: $\alpha(t)=(r \cos (\omega t), r \sin (\omega t), 0)$ with $r, \omega \in \mathbb{R}+$ constant $T=\alpha^{\prime}(s)$, where $s=\int\left|\alpha^{\prime}(t)\right| \mathrm{d} t$ is the arc length
$T=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$. If $t$ is time, then $T=\frac{\vec{v}}{|\vec{v}|}=\frac{\text { velocity }}{\text { speed }}$

brownsharpie.courtneygibbons.org/wp-content/comics/2008-08-22-off-on-a-tangent.jpg

## 1.3: TNB: Unit Tangent $T$ (Pointer Finger)

Example: $\alpha(t)=(r \cos (\omega t), r \sin (\omega t), 0)$ with $r, \omega \in \mathbb{R}+$ constant $T=\alpha^{\prime}(s)$, where $s=\int\left|\alpha^{\prime}(t)\right| \mathrm{d} t$ is the arc length
$T=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$. If $t$ is time, then $T=\frac{\vec{V}}{|\vec{V}|}=\frac{\text { velocity }}{\text { speed }}$

brownsharpie. courtneygibbons.org/wp-content/comics/2008-08-22-off-on-a-tangent.jpg
$\alpha^{\prime}(t)=(-r \omega \sin (\omega t), r \omega \cos (\omega t), 0)$

## 1.3: TNB: Unit Tangent $T$ (Pointer Finger)

Example: $\alpha(t)=(r \cos (\omega t), r \sin (\omega t), 0)$ with $r, \omega \in \mathbb{R}+$ constant $T=\alpha^{\prime}(s)$, where $s=\int\left|\alpha^{\prime}(t)\right| \mathrm{d} t$ is the arc length
$T=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$. If $t$ is time, then $T=\frac{\vec{v}}{|\vec{V}|}=\frac{\text { velocity }}{\text { speed }}$

brownsharpie. courtneygibbons.org/wp-content/comics/2008-08-22-off-on-a-tangent.jpg
$\alpha^{\prime}(t)=(-r \omega \sin (\omega t), r \omega \cos (\omega t), 0)$
$T=(-\sin (\omega t), \cos (\omega t), 0)$

## $N$ the Unit Normal (Middle Finger) and $\vec{\kappa}$ Curvature

$T(t)=(-\sin (\omega t), \cos (\omega t), 0)$


CC-BY-SA-3.0 Salix alba at English Wikipedia
$\alpha^{\prime \prime}(s)=T^{\prime}(s)=\vec{\kappa}$ and $\kappa=|\vec{k}|$
while $\alpha^{\prime}(s)$ has length $1, \alpha^{\prime \prime}(s)$ usually does not so $N=\frac{\vec{\kappa}}{\kappa}=\frac{\vec{R}}{|\vec{k}|}$

## $N$ the Unit Normal (Middle Finger) and $\vec{\kappa}$ Curvature

$T(t)=(-\sin (\omega t), \cos (\omega t), 0)$


CC-BY-SA-3.0 Salix alba at English Wikipedia
$\alpha^{\prime \prime}(s)=T^{\prime}(s)=\vec{\kappa}$ and $\kappa=|\vec{\kappa}|$
while $\alpha^{\prime}(s)$ has length $1, \alpha^{\prime \prime}(s)$ usually does not so $N=\frac{\vec{\kappa}}{\kappa}=\frac{\vec{k}}{|\vec{k}|}$
$\vec{\kappa}=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{\frac{d T}{d t}}{\frac{d s}{d t}}=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$

## $N$ the Unit Normal (Middle Finger) and $\vec{\kappa}$ Curvature

$T(t)=(-\sin (\omega t), \cos (\omega t), 0)$


CC-BY-SA-3.0 Salix alba at English Wikipedia
$\alpha^{\prime \prime}(s)=T^{\prime}(s)=\vec{\kappa}$ and $\kappa=|\vec{\kappa}|$
while $\alpha^{\prime}(s)$ has length $1, \alpha^{\prime \prime}(s)$ usually does not so $N=\frac{\vec{\kappa}}{\kappa}=\frac{\vec{\kappa}}{|\vec{k}|}$
$\vec{\kappa}=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{\frac{d T}{d t}}{\frac{d s}{d t}}=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=\frac{(-\omega \cos (\omega t),-\omega \sin (\omega t), 0)}{r \omega}$
$\kappa=|\vec{\kappa}|=$

## $N$ the Unit Normal (Middle Finger) and $\vec{\kappa}$ Curvature

$T(t)=(-\sin (\omega t), \cos (\omega t), 0)$


CC-BY-SA-3.0 Salix alba at English Wikipedia
$\alpha^{\prime \prime}(s)=T^{\prime}(s)=\vec{\kappa}$ and $\kappa=|\vec{\kappa}|$
while $\alpha^{\prime}(s)$ has length $1, \alpha^{\prime \prime}(s)$ usually does not so $N=\frac{\vec{\kappa}}{\kappa}=\frac{\vec{\kappa}}{|\vec{k}|}$
$\vec{\kappa}=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{\frac{d T}{d t}}{\frac{d s}{d t}}=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=\frac{(-\omega \cos (\omega t),-\omega \sin (\omega t), 0)}{r \omega}$
$\kappa=|\vec{\kappa}|=\frac{1}{r}$
$N=\frac{\vec{k}}{|\vec{k}|}=$

## $N$ the Unit Normal (Middle Finger) and $\vec{\kappa}$ Curvature

$T(t)=(-\sin (\omega t), \cos (\omega t), 0)$


CC-BY-SA-3.0 Salix alba at English Wikipedia
$\alpha^{\prime \prime}(s)=T^{\prime}(s)=\vec{\kappa}$ and $\kappa=|\vec{\kappa}|$
while $\alpha^{\prime}(s)$ has length $1, \alpha^{\prime \prime}(s)$ usually does not so $N=\frac{\vec{\kappa}}{\kappa}=\frac{\vec{\kappa}}{|\vec{k}|}$
$\vec{\kappa}=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{\frac{d T}{d t}}{\frac{d s}{d t}}=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=\frac{(-\omega \cos (\omega t),-\omega \sin (\omega t), 0)}{r \omega}$
$\kappa=|\vec{\kappa}|=\frac{1}{r}$
$N=\frac{\vec{k}}{|\vec{k}|}=(-\cos (\omega t),-\sin (\omega t), 0)$

## Why is the Derivative of a Unit Vector Perpendicular?

Why is $T^{\prime}$ perpendicular to $T$ ? (this shows $N$ is too)
$T \cdot T=$

## Why is the Derivative of a Unit Vector Perpendicular?

Why is $T^{\prime}$ perpendicular to $T$ ? (this shows $N$ is too)
$T \cdot T=1$, so take the derivative:

## Why is the Derivative of a Unit Vector Perpendicular?

Why is $T^{\prime}$ perpendicular to $T$ ? (this shows $N$ is too)
$T \cdot T=1$, so take the derivative: $T^{\prime} \cdot T+T \cdot T^{\prime}=0$

## Why is the Derivative of a Unit Vector Perpendicular?

Why is $T^{\prime}$ perpendicular to $T$ ? (this shows $N$ is too)
$T \cdot T=1$, so take the derivative: $T^{\prime} \cdot T+T \cdot T^{\prime}=0$
$2 T \cdot T^{\prime}=0$. Then $T \cdot T^{\prime}=0$ and as long as neither is 0 , then they are perpendicular.


Tracking the motion of $T$ via $T^{\prime}$ tells us how the curve curves $T$ turns towards $N$. Also, $\kappa$ tells us how fast $T$ turns
$\vec{\kappa}=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}, \kappa=|\vec{\kappa}|, N=\frac{\vec{\kappa}}{\kappa}$

## Osculating Circle



- Best fit circle is the osculating circle radius $\frac{1}{\kappa}$ and center $\alpha(t)+\frac{N}{\kappa}$ osculating plane $((x, y, z)-\alpha(t)) \cdot T \times N=0$
$T(t)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=(-\sin (\omega t), \cos (\omega t), 0)$
$N=\frac{\vec{k}}{|\vec{k}|}=(-\cos (\omega t),-\sin (\omega t), 0)$
$T \times N=$


## Osculating Circle



- Best fit circle is the osculating circle radius $\frac{1}{\kappa}$ and center $\alpha(t)+\frac{N}{\kappa}$ osculating plane $((x, y, z)-\alpha(t)) \cdot T \times N=0$
$T(t)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=(-\sin (\omega t), \cos (\omega t), 0)$
$N=\frac{\vec{R}}{|\vec{k}|}=(-\cos (\omega t),-\sin (\omega t), 0)$
$T \times N=\vec{k}=(0,0,1)$
osculating plane $(x-r \cos (\omega t), y-r \sin (\omega t), z-0) \cdot(0,0,1)=0$ osculating circle center $(0,0,0)$ and radius $r$


## $B$ the Unit Binormal (Thumb)

$T$ and $N$ form a plane, called the osculating plane and $B$, the binormal, is normal to that plane.

http://cs-www.cs.yale.edu/homes/li-gang/research/CurveStereo/index.html, CC-BY-SA-3.0 Salix alba at English Wikipedia
We unitized other vectors to form $T$ and $N$. Why is $B=T \times N$ also a unit vector?

## $B$ the Unit Binormal (Thumb)

$T$ and $N$ form a plane, called the osculating plane and $B$, the binormal, is normal to that plane.

http://cs-www.cs.yale.edu/homes/li-gang/research/CurveStereo/index.html, CC-BY-SA-3.0 Salix alba at English Wikipedia
We unitized other vectors to form $T$ and $N$. Why is $B=T \times N$ also a unit vector?
$|B|=|T| \times|N|=|T||N| \sin \theta$

## $B$ the Unit Binormal (Thumb)

$T$ and $N$ form a plane, called the osculating plane and $B$, the binormal, is normal to that plane.

http://cs-www.cs.yale.edu/homes/li-gang/research/CurveStereo/index.html, CC-BY-SA-3.0 Salix alba at English Wikipedia
We unitized other vectors to form $T$ and $N$. Why is $B=T \times N$ also a unit vector?
$|B|=|T| \times|N|=|T||N| \sin \theta=1 \cdot 1 \cdot \sin 90=1$
$B^{\prime}=-\tau N=(0,0,0)$ so $\tau=0$.

