Share from the everyday curve in \#1 and/or your favorite non-planar curve in \#3.

In physics and geometry, the lolcatenary is the curve that an idealized hanging lolcat assumes under its own weight when supported only at its ends.

Osculating Plane and Osculating Circle

curvature k : tracking T \& how the curve curves -torsion τ : tracking B \& twists out of osculating plane

http://cs-www.cs.yale.edu/homes/li-gang/research/CurveStereo/index.html
osculating circle: radius $\frac{1}{k}$ and center $\alpha(t) \pm \frac{1}{k} N$ osculating plane: $((x, y, z)-\alpha(t)) \cdot \boldsymbol{B}(t)=0$

Frenet-Serret Frame TNB

- $T=\alpha^{\prime}(s)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$. If t is time, then $T=\frac{\vec{v}}{\mid \overrightarrow{|v|}}=\frac{\text { velocity }}{\text { speed }}$
- $N=\frac{\vec{\kappa}}{|\vec{k}|}=\frac{\vec{\kappa}}{\kappa}$
where $\vec{\kappa}=\alpha^{\prime \prime}(s)=T^{\prime}(s)=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{\frac{d T}{d t}}{\frac{d s}{d t}}=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$
- $B=T \times N$
$B^{\prime}(s)=\frac{B^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=-\tau N$
As your hand moves along a curve, rotate it so the thumb
(B) turns away from the middle finger $N(-N)$ with a speed of τ. B^{\prime} captures the movement of the osculating plane $((x, y, z)-\alpha(t)) \cdot B(t)=0$.
$\left[\begin{array}{c}T^{\prime}(s) \\ N^{\prime}(s) \\ B^{\prime}(s)\end{array}\right]=\left[\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right]\left[\begin{array}{c}T \\ N \\ B\end{array}\right]$

1. For the Cycloid $\alpha(t)=(t+\sin t, 3-\cos t, 0)$ is the Frenet Frame defined everywhere on the domain from 0 to 7 ?

a) Yes and I have a good reason why
b) Yes but I am unsure of why
c) No but I am unsure of why not
d) No and I have a good reason why not
2. For the Spiral $\alpha(t)=(3 \cos t, 3 \sin t, \log t)$ is the Frenet Frame defined everywhere on the domain from . 0000001 to 2π ?

a) Yes and I have a good reason why
b) Yes but I am unsure of why
c) No but I am unsure of why not
d) No and I have a good reason why not

Note: T, k and N work in higher dimensions, but the osculating plane is not defined by a normal, nor does cross product make sense-that is replaced by tensors and forms.

http://pedemmorsels.com/wp-content/uploads/2014/01/Torsion.jpg

- In \mathbb{R}^{3}, show that B^{\prime} has no B component via a dot product argument.

Note: T, k and N work in higher dimensions, but the osculating plane is not defined by a normal, nor does cross product make sense-that is replaced by tensors and forms.

http://pedemmorsels.com/wp-content/uploads/2014/01/Torsion.jpg

- In \mathbb{R}^{3}, show that B^{\prime} has no B component via a dot product argument.
- Show that B^{\prime} has no tangential component via a cross product argument.

Warehouse 13's main characters Myka and Pete are trapped in a lemniscate in "The Greatest Gift." [Syfy, Universal Studios]

https://drive.google.com/file/d/18mfbulz3AgBwEuNYTo0XZJ8At_BYwp5v/view?usp=sharing

Warehouse 13's main characters Myka and Pete are trapped in a lemniscate in "The Greatest Gift." [Syfy, Universal Studios]
https://drive.google.com/file/d/18mfbulz3AgBwEuNYTo0XZJ8At_BYwp5v/view?usp=sharing a lemniscate can be parameterized so that the metric does expand [Amy Ksir, -]

- Lemniscate of Bernoulli $\left(\frac{3 \cos t}{1+\sin ^{2} t}, \frac{3 \sin t \cos t}{1+\sin ^{2} t}, 0\right)$
- Lemniscate of Myka $\left(\frac{t+t^{3}}{1+t^{4}}, \frac{t-t^{3}}{1+t^{4}}, 0\right)$
lemniscatemaple.mw
range $=-10$ to -.005 and from .005 to 10.

