1.3: T the Unit Tangent (Index Finger)

$T=\alpha^{\prime}(s)$, where $s=\int\left|\alpha^{\prime}(t)\right| \mathrm{d} t$ is the arc length
$T=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$. If t is time, then $T=\frac{\vec{v}}{|\vec{v}|}=\frac{\text { velocity }}{\text { speed }}$
Tracking the motion of T tells us how the curve curves. T turns towards N and κ tells us how fast T turns: $T^{\prime}(s)=\vec{\kappa}=\kappa N$

CC-BY-SA-3.0 Salix alba at English Wikipedia,
brownsharpie.courtneygibbons.org/wp-content/comics/2008-08-22-off-on-a-tangent.jpg

N the Unit Normal (Middle Finger) and \vec{k} Curvature

 $\alpha^{\prime \prime}(s)=T^{\prime}(s)=\vec{\kappa}=\kappa N$, so $N=\frac{\vec{\kappa}}{\kappa}=\frac{\vec{\kappa}}{|\vec{\kappa}|}$Note: while $\alpha^{\prime}(s)$ has length $1, \alpha^{\prime \prime}(s)$ usually does not
If T is not parameterized by arc length,

N the Unit Normal (Middle Finger) and \vec{k} Curvature

$\alpha^{\prime \prime}(s)=T^{\prime}(s)=\vec{\kappa}=\kappa N$, so $N=\frac{\vec{k}}{k}=\frac{\vec{R}}{|\vec{k}|}$
Note: while $\alpha^{\prime}(s)$ has length $1, \alpha^{\prime \prime}(s)$ usually does not
If T is not parameterized by arc length, apply chain rule:
$\left.\vec{\kappa}=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{d T}{\frac{d T}{d t}} \frac{T^{\prime}(t)}{d t} \right\rvert\, \frac{\alpha^{\prime}(t) \mid}{}$

B the Unit Binormal (Thumb)

T and N form a plane, called the osculating plane and B, the binormal, is normal to that plane.

http://cs-www.cs.yale.edu/homes/li-gang/research/CurveStereo/index.html, CC-BY-SA-3.0
 also a unit vector?

B the Unit Binormal (Thumb)

T and N form a plane, called the osculating plane and B, the binormal, is normal to that plane.

http://cs-www.cs.yale.edu/homes/li-gang/research/CurveStereo/index.html, CC-BY-SA-3.0
We unitized other vectors to form T and N. Why is $B=T \times N$ also a unit vector?
$B^{\prime}=-\tau N$
As your hand moves along a curve, rotate it so the thumb (B) turns away from the middle finger $N(-N)$ with a speed of τ. B^{\prime} captures the movement of the osculating plane.

Frenet-Serret FrameTNB

- $T=\alpha^{\prime}(s)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$. If t is time, then $T=\frac{\vec{v}}{|\vec{V}|}=\frac{\text { velocity }}{\text { speed }}$
- $N=\frac{\vec{k}}{|\vec{\kappa}|}=\frac{\vec{\kappa}}{\kappa}$
where $\vec{\kappa}=\alpha^{\prime \prime}(s)=T^{\prime}(s)=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{\frac{d T}{d t}}{\frac{d s}{d t}}=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$
- $B=T \times N$

http://www.allacronyms.com/TNB/Tangent-Normal-Binormal, CC-BY-SA-3.0 Salix alba at English Wikipedia

$$
\left[\begin{array}{c}
T^{\prime}(s) \\
N^{\prime}(s) \\
B^{\prime}(s)
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

Osculating Circle

- Best fit circle

- https://faculty.evansville.edu/ck6/ GalleryTwo/CK_Frenet_Osculating_A.gif
- Historical curves
http://mathshistory.st-andrews.ac.uk/
Curves/Curves.html
http://mathworld.wolfram.com/Astroid.html
- Geometric intuition:
http://theronhitchman.blogspot.com/2015/02/ the-geometry-of-frenet-serret-equations. html

