1. Which of the following could represent the line between the points (-3,2,5) and (1,-2,4)

a)
$$\begin{bmatrix} -3\\2\\5 \end{bmatrix} + t \begin{bmatrix} -4\\4\\1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1\\-2\\4 \end{bmatrix} + t \begin{bmatrix} 4\\-4\\-1 \end{bmatrix}$$

- c) both of the above
- d) none of the above
- 2. a line satisfies
 - a) velocity is $\vec{0}$
 - b) acceleration is $\vec{0}$
 - c) acceleration is nonzero but constant
 - d) more than one of the above
 - e) none of the above
- 3. In Euclidean space, the shortest distance path between \vec{p} and \vec{q} is the line $\vec{p} + t(\vec{q} \vec{p})$ because:
 - a) No matter the geometry, we must head in the direction from \vec{p} to \vec{q} to achieve the shortest path
 - b) The length of the line $= \int_a^b \alpha'(t) \cdot \frac{\vec{q}-\vec{p}}{|\vec{q}-\vec{p}|} dt \leq \int_a^b |\alpha'(t)| |\frac{\vec{q}-\vec{p}}{|\vec{q}-\vec{p}|} |dt = \int_a^b |\alpha'(t)| dt$
 - c) Both of the above
 - d) None of the above

- 4. The dot product of two vectors, $\vec{v} \cdot \vec{w}$ is
 - a) $|\vec{v}| |\vec{w}| cos(\theta)$ where θ is the angle between them
 - b) $|\vec{v}| |\vec{w}| sin(\theta)$
 - c) $v_1w_1 + v_2w_2 + v_3w_3$, where v_i is the *i*th entry of \vec{v}
 - d) all of the above
 - e) two of the above
- 5. To calculate a tangent vector and the velocity vector
 - a) If they are parametrized by time then it is the same calculation
 - b) They are always equal
 - c) For tangent take the component derivatives with respect to the parameter in the parametrization, for velocity take the component derivatives with respect to time
 - d) two of the above
 - e) none of the above