- 1. Which of the following represents $\frac{\vec{\kappa}}{|\vec{\kappa}|}$?
 - a) *B*
 - b) *N*
 - c) *B*′
 - d) N'
 - e) T'
- 2. Which of the following represents $-\kappa T \tau B$?
 - a) B
 - b) *N*
 - c) *B*′
 - d) N'
 - e) T'
- 3. Which of the following measures the deviation from a constant speed path?
 - a) position
 - b) velocity
 - c) acceleration
 - d) curvature
 - e) torsion
- 4. Which of the following measures the twisting out of a plane?
 - a) position
 - b) velocity
 - c) acceleration
 - d) curvature
 - e) torsion
- 5. Combining the T' Frenet equation with the expression for T' in the Darboux vector (angular velocity), and writing ω in terms of the basis given by T, N and B, we can compute:

$$T' = \kappa N = \omega \times T = (c_1 T + c_2 N + c_3 B) \times T$$

and from there obtain

- a) T' = 0
- b) $c_1 = 0$
- c) $T' = c_2(-B) + c_3 N$
- d) $c_2 = 0$
- e) more than one answer holds

6. In the following image, if a coaster car is traveling for a bit on a coaster shaped like the following, following the path of the arrow,

- a) τ is 0
- b) B is the only axis of the spin in this case for the Darboux vector $\omega = \pm \tau T + \kappa B$, which points perpendicular to the coaster
- c) the people in the coaster would feel the curvature of the curve as a tilt
- d) the people in the coaster would feel the curvature pulling them sideways
- e) more than one answer holds from a), b) and c) but not all of them
- 7. The parametrization of the inner annulus circle from the homework is
 - a) $(\cos t, \sin t, \frac{10t}{2\pi})$
 - b) $(1.2\cos t, 1.2\sin t, \frac{10t}{2\pi})$

c)
$$\left(\frac{\pi^2 + 25}{\pi^2} \cos t, \frac{\pi^2 + 25}{\pi^2} \sin t, 0\right)$$

d) $\left(\left(.2 + \frac{\pi^2 + 25}{\pi^2} \right) \cos t, \left(.2 + \frac{\pi^2 + 25}{\pi^2} \right) \sin t, 0 \right)$

e)
$$(\cos t, \sin t, 0)$$

8. The parametrization of the outer strake from the homework is

a)
$$(\cos t, \sin t, \frac{10t}{2\pi})$$

b) $(1.2 \cos t, 1.2 \sin t, \frac{10t}{2\pi})$
c) $(\frac{\pi^2 + 25}{\pi^2} \cos t, \frac{\pi^2 + 25}{\pi^2} \sin t, 0)$
d) $((.2 + \frac{\pi^2 + 25}{\pi^2}) \cos t, (.2 + \frac{\pi^2 + 25}{\pi^2}) \sin t, 0)$
e) $(\cos t, \sin t, 0)$

- 9. The arc length of the inner and outer strake can be computed in Maple by going from 0 to 2π . The inner length of the annulus is the same as the inner length of the strake $\operatorname{ArcLength}(\langle \cos t, \sin t, \frac{10t}{2\pi} \rangle, t = 0..2\pi) = 2\sqrt{\pi^2 + 25}$ since we cut it to match the lengths. To compute the outer length of the annulus, we can:
 - a) Use the arclength command on the parametrization of the outer annulus $\left(\left(.2+\frac{\pi^2+25}{\pi^2}\right)\cos t, \left(.2+\frac{\pi^2+25}{\pi^2}\right)\sin t, 0\right)$ in Maple from 0 to 2π
 - b) Set up a proportion: length of the inner annulus/inner radius = length of the outer annulus/outer radius = $\frac{2\sqrt{\pi^2+25}}{\frac{\pi^2+25}{\pi^2}} = \frac{\text{length}}{\frac{.2+\frac{\pi^2+25}{\pi^2}}{\pi^2}}$ and solve from there to obtain ≈ 12.479
 - c) Set it equal to the arc length of the outer helix: ArcLength(< $1.2 \cos t, 1.2 \sin t, \frac{10t}{2\pi} >, t = 0..2\pi$) ≈ 12.524
 - d) Solve for the time that the arc length of the inner annulus matches the arc length of the inner helix from 0 to 2π and use that time in the outer annulus computation
 - e) None of the above