Tensors and the Metric Tensor $g_{i j}$

lists \#s

3	1	4	1
5	9	2	6
5	3	5	8
9	7	9	3
2	3	8	4
6	2	6	4

vectors

stack of matrices

- algebraic combinations of vectors, matrices, vector spaces, algebras, modules or other structures
- often geometrically meaningful
- not all tensors are inherently linear maps
$g_{i j}$ inner products of tangent vectors $\left[\begin{array}{ll}a & b\end{array}\right]\left[\begin{array}{ll}E & F \\ F & G\end{array}\right]\left[\begin{array}{l}c \\ d\end{array}\right]$
$g^{i j}=g_{i j}^{-1}=\left[\begin{array}{ll}E & F \\ F & G\end{array}\right]^{-1}=\frac{1}{E G-F^{2}}\left[\begin{array}{cc}G & -F \\ -F & E\end{array}\right]$

SpaceTime-Time

Surfaces: $g_{i j}$ inner products of tangent vectors $w^{T} g_{i j} v$

$$
\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

SpaceTime: Metric tensor is now 4×4 symmetric matrix acting as $w^{T} g_{i j} v$ on (t, x, y, z) vectors.

$$
\left[\begin{array}{llll}
t & x & y & z
\end{array}\right]\left[\begin{array}{llll}
g_{11} & g_{12} & g_{13} & g_{14} \\
g_{21} & g_{22} & g_{23} & g_{24} \\
g_{31} & g_{32} & g_{33} & g_{34} \\
g_{41} & g_{42} & g_{43} & g_{44}
\end{array}\right]\left[\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right]
$$

Yardstick plus clock!

Christoffel Symbols and Curvatures

- Write $I=g_{a b} \dot{x}^{a} \dot{x}^{b}$.
- Let $a=1$ in the Euler-Lagrange Equation

$$
\frac{d}{d s}\left(\frac{\partial I}{\partial \dot{x}^{a}}\right)-\frac{\partial I}{\partial x^{a}}=0 \text { for all } a
$$

- Take the relevant partials and derivatives.
- Write the expansion of the geodesic equation $\ddot{x}^{a}+\Gamma_{b c}^{a} \dot{x}^{b} \dot{x}^{c}=0$ using $a=1(b, c$ range from 1...4)
- Compare to find the $\Gamma_{a b}^{1}$ Christoffel symbols?
- Repeat for $a=2, a=3, a=4$

Riemann curvature tensor or Riemann-Christoffel tensor $R_{b c d}^{a}=\partial_{c} \Gamma_{b d}^{a}-\partial_{d} \Gamma_{b c}^{a}+\Gamma_{b d}^{e} \Gamma_{e c}^{a}-\Gamma_{b c}^{e} \Gamma_{e d}^{a}$
Ricci tensor $R_{a b}=R_{a c b}^{c}=g^{c d} R_{d a c b}$
Scalar curvature $R=g^{a b} R_{a b}$
Einstein tensor $G_{a b}=R_{a b}-\frac{1}{2} g_{a b} R$

Christoffel Symbols and Curvatures

The Christoffel symbols

- intrinsic quantities, how to take covariant derivatives
- coefficients of tangent vectors (connection coefficients)
- measure whether or not vectors are parallel transports
- in relativity, gravitational forces. geodesics and curvatures.

Riemann curvature tensor: measures how much a manifold is not flat via $4^{4}=256$ entries for spacetime.

Ricci tensor: trace (sum of diagonal elements) relates to the metric volume $\sqrt{\operatorname{detg}_{j i}}$.
Scalar curvature: number. For surfaces-twice Gaussian curvature. For relativity-Lagrangian density.
Einstein tensor describes curvature of spacetime due to the presence of energy or mass, has zero divergence

Dr. Sarah

