
Applications of Curvature and Torsion
In order to make my clock even more exact.... I never
had expected I would discover, I have now hit upon, the
undoubtedly true shape of curves... I determined it by
geometric reasoning. (Christiaan Huygens Dec. 1659)

Piccinelli, Marina et al. 2009. “A framework for geometric analysis of vascular structures” IEEE Trans. Med. Imaging
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T , ~κ, κ,N,B, τ,T ′,N ′,B′

T (t) = α′(t)
|α′(t)|

~κ = T ′(t)
|α′(t)|

κ = |~κ|
N(t) = ~κ

|~κ|

B(t) = T × N

τ : compute B′(t)
|α′(t)| & compare it to N (they are multiples of

each other) to find −τ and then τ
T ′(s) = κN
N ′(s) = −κT + τB
B′(s) = −τNT ′(s)

N ′(s)
B′(s)

 =

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B
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Prove that α(s) with κ = 0 is a line
Prove that α(s) with τ = 0 is a planar curve
Prove that α(s) planar with κ > 0 constant is circular

Pitt et al.: “Polyphony: superposition independent methods for ensemble-based drug discovery.” BMC Bioinformatics

2014 15:324.
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To prove that α(s) with κ = 0 is a line, assume κ = 0. Then
T ′(s) =

κN = 0N = ~0. So T (s) =
∫

T ′(s)ds is a constant, call it
~v . Then α(s) =

∫
T (s)ds =

∫
~vds = s~v + c, which is a line.
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2014 15:324.

To prove that α(s) with τ = 0 is a planar curve, assume τ = 0.
Now B′ =

− τN = 0N = ~0. So B is constant. Examine the
plane determined by α(0) and B: ((x , y , z)− α(0)) · B = 0. To
show that α(s) is inside of it for all s, consider (α(s)− α(0)) · B.
Taking the derivative, we see that
(α′(s)− ~0) · B + (α(s)− α(0)) · B′ = α′(s) · B = T · B = 0. So
(α(s)− α(0)) · B is a constant. To show the constant is 0, plug
in s = 0: (α(0)− α(0)) · B = 0 · B = 0. Thus α(s) is in that
plane.
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To show k > 0 constant for a plane curve then α(s) is part of a
circle, assume k > 0 constant for a plane curve. Look at
α(s) + 1

κN(s)

and take the derivative: α′(s) + 1
κN ′(s)

= T (s)+ 1
κ(−κT+τB) = T (s)+ 1

κ(−κT+0B) = T (s)−T (s) = ~0.
The equation of a circle in 3-space is the intersection of
|(x , y , z)− fixed center| = r with a fixed plane. Now
|α(s)− (α(s) + 1

κN(s))| = | 1κN(s)| = 1
κ , so α(s) is part of that

circle with fixed center α(s) + 1
κN(s)) and fixed radius 1

κ .
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Darboux Vector ω(s): Angular Velocity Vector
rigid body translation and rotation along a nonlinear curve

T ′(s) = ω(s)×T (s), N ′(s) = ω(s)×N(s), B′(s) = ω(s)×B(s)

Write ω = c1T + c2N + c3B. To find c2, notice
κN = T ′ = ω(s)× T (s), so κN ⊥ ω. But then
0 = ω · κN = (c1T + c2N + c3B) · κN
= c1T · κN + c2N · κN + c3B · κN = c2κN · N = c2κ.
So c2 = 0 and ω = c1T + c3B.

−κT + τB = N ′ = ω(s)× N(s) so −κT + τB ⊥ ω. But then
0 = ω · (−κT + τB) = (c1T + c3B) · (−κT + τB)
= −κc1T · T + τc1T · B − κc3B · T + τc3B · B = −κc1 + τc3

c1 = τ and c3 = κ and ω(s) = τT + κB
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Darboux Vector ω(s): Angular Velocity Vector
ω(s) = τT + κB
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