Applications of Curvature and Torsion

In order to make my clock even more exact.... I never had expected I would discover, I have now hit upon, the undoubtedly true shape of curves... I determined it by geometric reasoning. (Christiaan Huygens Dec. 1659)

Piccinelli, Marina et al. 2009. "A framework for geometric analysis of vascular structures" IEEE Trans. Med. Imaging

$T, \vec{\kappa}, \kappa, N, B, \tau, T^{\prime}, N^{\prime}, B^{\prime}$

- $T(t)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$
- $\vec{\kappa}=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$
- $\kappa=|\vec{\kappa}|$
- $N(t)=\frac{\vec{k}}{|\vec{k}|}$
- $B(t)=T \times N$
- τ : compute $\frac{B^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$ \& compare it to N (they are multiples of each other) to find $-\tau$ and then τ
- $T^{\prime}(s)=\kappa N$

$$
\begin{aligned}
& N^{\prime}(s)=-\kappa T+\tau B \\
& B^{\prime}(s)=-\tau N
\end{aligned}
$$

$$
\left[\begin{array}{c}
T^{\prime}(s) \\
N^{\prime}(s) \\
B^{\prime}(s)
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

- Prove that $\alpha(s)$ with $\kappa=0$ is a line
- Prove that $\alpha(s)$ with $\tau=0$ is a planar curve
- Prove that $\alpha(s)$ planar with $\kappa>0$ constant is circular

High
Medium
Zero

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics 2014 15:324.

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics 2014 15:324.

To prove that $\alpha(s)$ with $\kappa=0$ is a line, assume $\kappa=0$. Then $T^{\prime}(s)=$

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics 2014 15:324.

To prove that $\alpha(s)$ with $\kappa=0$ is a line, assume $\kappa=0$. Then $T^{\prime}(s)=\kappa N=0 N=\overrightarrow{0}$.

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics 2014 15:324.

To prove that $\alpha(s)$ with $\kappa=0$ is a line, assume $\kappa=0$. Then $T^{\prime}(s)=\kappa N=0 N=\overrightarrow{0}$. So $T(s)=\int T^{\prime}(s) d s$ is a constant, call it \vec{v}.

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics 2014 15:324.

To prove that $\alpha(s)$ with $\kappa=0$ is a line, assume $\kappa=0$. Then $T^{\prime}(s)=\kappa N=0 N=\overrightarrow{0}$. So $T(s)=\int T^{\prime}(s) d s$ is a constant, call it \vec{v}. Then $\alpha(s)=\int T(s) d s=\int \vec{v} d s=s \vec{v}+c$, which is a line. \square

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics 2014 15:324.

To prove that $\alpha(s)$ with $\tau=0$ is a planar curve, assume $\tau=0$. Now $B^{\prime}=$

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics

$$
2014 \text { 15:324. }
$$

To prove that $\alpha(s)$ with $\tau=0$ is a planar curve, assume $\tau=0$. Now $B^{\prime}=-\tau N=0 N=\overrightarrow{0}$. So B is constant. Examine the plane determined by $\alpha(0)$ and $B:((x, y, z)-\alpha(0)) \cdot B=0$. To show that $\alpha(\boldsymbol{s})$ is inside of it for all \boldsymbol{s}, consider $(\alpha(\boldsymbol{s})-\alpha(0)) \cdot \boldsymbol{B}$.

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics 2014 15:324.

To prove that $\alpha(s)$ with $\tau=0$ is a planar curve, assume $\tau=0$. Now $B^{\prime}=-\tau N=0 N=\overrightarrow{0}$. So B is constant. Examine the plane determined by $\alpha(0)$ and $B:((x, y, z)-\alpha(0)) \cdot B=0$. To show that $\alpha(s)$ is inside of it for all s, consider $(\alpha(s)-\alpha(0)) \cdot \boldsymbol{B}$. Taking the derivative, we see that

$$
\left(\alpha^{\prime}(s)-\overrightarrow{0}\right) \cdot \boldsymbol{B}+(\alpha(s)-\alpha(0)) \cdot B^{\prime}=\alpha^{\prime}(s) \cdot \boldsymbol{B}=\boldsymbol{T} \cdot \boldsymbol{B}
$$

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics 2014 15:324.

To prove that $\alpha(s)$ with $\tau=0$ is a planar curve, assume $\tau=0$. Now $B^{\prime}=-\tau N=0 N=\overrightarrow{0}$. So B is constant. Examine the plane determined by $\alpha(0)$ and $B:((x, y, z)-\alpha(0)) \cdot B=0$. To show that $\alpha(s)$ is inside of it for all s, consider $(\alpha(s)-\alpha(0)) \cdot \boldsymbol{B}$. Taking the derivative, we see that $\left(\alpha^{\prime}(s)-\overrightarrow{0}\right) \cdot B+(\alpha(s)-\alpha(0)) \cdot B^{\prime}=\alpha^{\prime}(s) \cdot B=T \cdot B=0$. So $(\alpha(s)-\alpha(0)) \cdot B$ is a constant. To show the constant is 0 , plug in $\boldsymbol{s}=0:(\alpha(0)-\alpha(0)) \cdot \boldsymbol{B}=0 \cdot \boldsymbol{B}=0$. Thus $\alpha(\boldsymbol{s})$ is in that plane. \square

Piccinelli, Marina et al. 2009. "A framework for geometric analysis of vascular structures" IEEE Trans. Med. Imaging
To show $k>0$ constant for a plane curve then $\alpha(s)$ is part of a circle, assume $k>0$ constant for a plane curve. Look at $\alpha(s)+\frac{1}{\kappa} N(s)$

Piccinelli, Marina et al. 2009. "A framework for geometric analysis of vascular structures" IEEE Trans. Med. Imaging
To show $k>0$ constant for a plane curve then $\alpha(s)$ is part of a circle, assume $k>0$ constant for a plane curve. Look at $\alpha(s)+\frac{1}{\kappa} N(s)$ and take the derivative: $\alpha^{\prime}(s)+\frac{1}{\kappa} N^{\prime}(s)$

Piccinelli, Marina et al. 2009. "A framework for geometric analysis of vascular structures" IEEE Trans. Med. Imaging
To show $k>0$ constant for a plane curve then $\alpha(s)$ is part of a circle, assume $k>0$ constant for a plane curve. Look at $\alpha(s)+\frac{1}{\kappa} N(s)$ and take the derivative: $\alpha^{\prime}(s)+\frac{1}{\kappa} N^{\prime}(s)$
$=T(s)+\frac{1}{\kappa}(-\kappa T+\tau B)=T(s)+\frac{1}{\kappa}(-\kappa T+0 B)=T(s)-T(s)=\overrightarrow{0}$.

Piccinelli, Marina et al. 2009. "A framework for geometric analysis of vascular structures" IEEE Trans. Med. Imaging
To show $k>0$ constant for a plane curve then $\alpha(s)$ is part of a circle, assume $k>0$ constant for a plane curve. Look at $\alpha(s)+\frac{1}{\kappa} N(s)$ and take the derivative: $\alpha^{\prime}(s)+\frac{1}{\kappa} N^{\prime}(s)$
$=T(s)+\frac{1}{\kappa}(-\kappa T+\tau B)=T(s)+\frac{1}{\kappa}(-\kappa T+0 B)=T(s)-T(s)=\overrightarrow{0}$.
The equation of a circle in 3-space is the intersection of $\mid(x, y, z)-$ fixed center $\mid=r$ with a fixed plane.

Piccinelli, Marina et al. 2009. "A framework for geometric analysis of vascular structures" IEEE Trans. Med. Imaging
To show $k>0$ constant for a plane curve then $\alpha(s)$ is part of a circle, assume $k>0$ constant for a plane curve. Look at $\alpha(s)+\frac{1}{\kappa} N(s)$ and take the derivative: $\alpha^{\prime}(s)+\frac{1}{\kappa} N^{\prime}(s)$
$=T(s)+\frac{1}{\kappa}(-\kappa T+\tau B)=T(s)+\frac{1}{\kappa}(-\kappa T+0 B)=T(s)-T(s)=\overrightarrow{0}$.
The equation of a circle in 3-space is the intersection of $\mid(x, y, z)$ - fixed center $\mid=r$ with a fixed plane. Now $\left|\alpha(s)-\left(\alpha(s)+\frac{1}{\kappa} N(s)\right)\right|$

Piccinelli, Marina et al. 2009. "A framework for geometric analysis of vascular structures" IEEE Trans. Med. Imaging
To show $k>0$ constant for a plane curve then $\alpha(s)$ is part of a circle, assume $k>0$ constant for a plane curve. Look at $\alpha(s)+\frac{1}{\kappa} N(s)$ and take the derivative: $\alpha^{\prime}(s)+\frac{1}{\kappa} N^{\prime}(s)$ $=T(s)+\frac{1}{\kappa}(-\kappa T+\tau B)=T(s)+\frac{1}{\kappa}(-\kappa T+0 B)=T(s)-T(s)=\overrightarrow{0}$.
The equation of a circle in 3-space is the intersection of $\mid(x, y, z)$ - fixed center $\mid=r$ with a fixed plane. Now $\left|\alpha(s)-\left(\alpha(s)+\frac{1}{\kappa} N(s)\right)\right|=\left|\frac{1}{\kappa} N(s)\right|=\frac{1}{\kappa}$, so $\alpha(s)$ is part of that circle with fixed center $\left.\alpha(s)+\frac{1}{\kappa} N(s)\right)$ and fixed radius $\frac{1}{\kappa}$. \square

Darboux Vector $\omega(s)$: Angular Velocity Vector

 rigid body translation and rotation along a nonlinear curve$$
T^{\prime}(s)=\omega(s) \times T(s), \quad N^{\prime}(s)=\omega(s) \times N(s), \quad B^{\prime}(s)=\omega(s) \times B(s)
$$

Darboux Vector $\omega(s)$: Angular Velocity Vector

 rigid body translation and rotation along a nonlinear curve$T^{\prime}(s)=\omega(s) \times T(s), \quad N^{\prime}(s)=\omega(s) \times N(s), \quad B^{\prime}(s)=\omega(s) \times B(s)$
Write $\omega=c_{1} T+c_{2} N+c_{3} B$. To find c_{2}, notice
$\kappa N=T^{\prime}=\omega(s) \times T(s)$, so

Darboux Vector $\omega(s)$: Angular Velocity Vector

 rigid body translation and rotation along a nonlinear curve$T^{\prime}(s)=\omega(s) \times T(s), \quad N^{\prime}(s)=\omega(s) \times N(s), \quad B^{\prime}(s)=\omega(s) \times B(s)$
Write $\omega=c_{1} T+c_{2} N+c_{3} B$. To find c_{2}, notice
$\kappa N=T^{\prime}=\omega(s) \times T(s)$, so $\kappa N \perp \omega$. But then
$0=\omega \cdot \kappa N=\left(c_{1} T+c_{2} N+c_{3} B\right) \cdot \kappa N$
$=c_{1} T \cdot \kappa N+c_{2} N \cdot \kappa N+c_{3} B \cdot \kappa N=c_{2} \kappa N \cdot N=c_{2} \kappa$.

Darboux Vector $\omega(s)$: Angular Velocity Vector

 rigid body translation and rotation along a nonlinear curve$T^{\prime}(s)=\omega(s) \times T(s), \quad N^{\prime}(s)=\omega(s) \times N(s), \quad B^{\prime}(s)=\omega(s) \times B(s)$
Write $\omega=c_{1} T+c_{2} N+c_{3} B$. To find c_{2}, notice
$\kappa N=T^{\prime}=\omega(s) \times T(s)$, so $\kappa N \perp \omega$. But then
$0=\omega \cdot \kappa N=\left(c_{1} T+c_{2} N+c_{3} B\right) \cdot \kappa N$
$=c_{1} T \cdot \kappa N+c_{2} N \cdot \kappa N+c_{3} B \cdot \kappa N=c_{2} \kappa N \cdot N=c_{2} \kappa$.
So $c_{2}=0$ and $\omega=c_{1} T+c_{3} B$.
$-\kappa T+\tau B=$

Darboux Vector $\omega(s)$: Angular Velocity Vector

 rigid body translation and rotation along a nonlinear curve$T^{\prime}(s)=\omega(s) \times T(s), \quad N^{\prime}(s)=\omega(s) \times N(s), \quad B^{\prime}(s)=\omega(s) \times B(s)$
Write $\omega=c_{1} T+c_{2} N+c_{3} B$. To find c_{2}, notice
$\kappa N=T^{\prime}=\omega(s) \times T(s)$, so $\kappa N \perp \omega$. But then
$0=\omega \cdot \kappa N=\left(c_{1} T+c_{2} N+c_{3} B\right) \cdot \kappa N$
$=c_{1} T \cdot \kappa N+c_{2} N \cdot \kappa N+c_{3} B \cdot \kappa N=c_{2} \kappa N \cdot N=c_{2} \kappa$.
So $c_{2}=0$ and $\omega=c_{1} T+c_{3} B$.
$-\kappa T+\tau B=N^{\prime}=\omega(s) \times N(s)$ so $-\kappa T+\tau B \perp \omega$. But then
$0=\omega \cdot(-\kappa T+\tau B)=\left(c_{1} T+c_{3} B\right) \cdot(-\kappa T+\tau B)$
$=-\kappa c_{1} T \cdot T+\tau c_{1} T \cdot B-\kappa c_{3} B \cdot T+\tau c_{3} B \cdot B=-\kappa c_{1}+\tau c_{3}$
$c_{1}=\tau$ and $c_{3}=\kappa$ and $\omega(\boldsymbol{s})=\tau T+\kappa B$

Darboux Vector $\omega(s)$: Angular Velocity Vector $\omega(s)=\tau T+\kappa B$

http://www.nafaonline.org/images/rollerCoaster100x150.jpg

