- Prove that $\alpha(s)$ is a line $\Leftrightarrow \kappa=0$
- Prove that $\alpha(s)$ is planar $\Leftrightarrow \tau=0$

High

Medium

Zero

Pitt et al.: "Polyphony: superposition independent methods for ensemble-based drug discovery." BMC Bioinformatics 2014 15:324.
http://cs.appstate.edu/~sjo/ciass/4140/tactivitiescurvesz.pdif

Helix

http://www.nerdytshirt.com/calculus3-tshirts.html

Helix

http://www.nerdytshirt.com/calculus3-tshirts.html
Notice that $\frac{\tau}{\kappa}$ is constant. κ

Strake

https://cdn.britannica.com/22/70822-004-B85BF4BD/
strake-strip-dimensions-cylinder-contour-Techniques-differential.jpg

1. To prove that the derivative of a unit vector \vec{u} is perpendicular to the original...
a) take the derivative of $\vec{u} \cdot \vec{u}$ and argue from there
b) take the derivative of $\vec{u} \times \vec{u}$ and argue from there
c) both of the above
d) none of the above

2. Which of the following represents $-\kappa T+\tau B$?
a) T^{\prime}
b) N^{\prime}
c) B^{\prime}
d) more than one of the above
e) none of the above

Blog post on creating tubes, ribbons and moving camera orientations
3. Why is N perpendicular to T ?
a) Because N is parallel to \vec{k}, and \vec{k} is the derivative of the unit vector T and hence perpendicular to it
b) Because $N=B \times T$
c) both of the above
d) It isn't perpendicular
e) It is perpendicular but not by any of the above

4. In the following image, if a coaster car is traveling for a bit on a coaster shaped like the following, following the curve, then

http://img.tfd.com/mgh/cep/thumb/Angular-velocity-shown-as-an-axial-vector.jpg
a) the people in the coaster would feel the curvature of the curve as a tilt, dip or even flip upside down
b) the people in the coaster would feel the curvature pulling them sideways
c) both of the above
d) none of the above

Osculating Plane and Osculating Circle

curvature k : tracking T \& how the curve curves -torsion τ : tracking B \& twists out of osculating plane

http://cs-www.cs.yale.edu/homes/li-gang/research/CurveStereo/index.html
osculating circle: radius $\frac{1}{k}$ and center $\alpha(t) \pm \frac{1}{k} N$ osculating plane: $((x, y, z)-\alpha(t)) \cdot \boldsymbol{B}(t)=0$

Frenet-Serret Frame TNB

- $T=\alpha^{\prime}(s)=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$. If t is time, then $T=\frac{\vec{v}}{\mid \overrightarrow{|v|}}=\frac{\text { velocity }}{\text { speed }}$
- $N=\frac{\vec{\kappa}}{|\vec{k}|}=\frac{\vec{\kappa}}{\kappa}$
where $\vec{\kappa}=\alpha^{\prime \prime}(s)=T^{\prime}(s)=\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{\frac{d T}{d t}}{\frac{d s}{d t}}=\frac{T^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$
- $B=T \times N$
$B^{\prime}(s)=\frac{B^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}=-\tau N$
As your hand moves along a curve, rotate it so the thumb
(B) turns away from the middle finger $N(-N)$ with a speed of τ. B^{\prime} captures the movement of the osculating plane $((x, y, z)-\alpha(t)) \cdot B(t)=0$.
$\left[\begin{array}{c}T^{\prime}(s) \\ N^{\prime}(s) \\ B^{\prime}(s)\end{array}\right]=\left[\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right]\left[\begin{array}{c}T \\ N \\ B\end{array}\right]$

