Coordinates on a Cylinder

- Choose ($0,0,0$), and $3 \perp$ axes
- Choose $+z$ as a cylinder height axis
- Let θ be the angle traveled from the origin in the $x y$ plane

Coordinates on a Cylinder

- Choose ($0,0,0$), and $3 \perp$ axes
- Choose $+z$ as a cylinder height axis
- Let θ be the angle traveled from the origin in the $x y$ plane

Extrinsic coordinates : $x(\theta, z)=(r \cos (\theta), r \sin (\theta), z)$

Coordinates on a Cylinder

- Choose ($0,0,0$), and $3 \perp$ axes
- Choose $+z$ as a cylinder height axis
- Let θ be the angle traveled from the origin in the $x y$ plane

Extrinsic coordinates : $x(\theta, z)=(r \cos (\theta), r \sin (\theta), z)$
Problem: Bug no awareness of 3-space

Coordinates on a Cylinder

- Choose ($0,0,0$), and $3 \perp$ axes
- Choose $+z$ as a cylinder height axis
- Let θ be the angle traveled from the origin in the $x y$ plane

Extrinsic coordinates : $x(\theta, z)=(r \cos (\theta), r \sin (\theta), z)$
Problem: Bug no awareness of 3-space

- Choose $(0,0)$ as an intrinsic origin.

Coordinates on a Cylinder

- Choose ($0,0,0$), and $3 \perp$ axes
- Choose $+z$ as a cylinder height axis
- Let θ be the angle traveled from the origin in the $x y$ plane

Extrinsic coordinates : $x(\theta, z)=(r \cos (\theta), r \sin (\theta), z)$
Problem: Bug no awareness of 3-space

- Choose $(0,0)$ as an intrinsic origin. There is 1 geodesic that will return there, so call that the base curve

Coordinates on a Cylinder

- Choose ($0,0,0$), and $3 \perp$ axes
- Choose $+z$ as a cylinder height axis
- Let θ be the angle traveled from the origin in the $x y$ plane

Extrinsic coordinates : $x(\theta, z)=(r \cos (\theta), r \sin (\theta), z)$
Problem: Bug no awareness of 3-space

- Choose $(0,0)$ as an intrinsic origin. There is 1 geodesic that will return there, so call that the base curve
- Choose $+z$ as a direction \perp to the base curve

Coordinates on a Cylinder

- Choose ($0,0,0$), and $3 \perp$ axes
- Choose $+z$ as a cylinder height axis
- Let θ be the angle traveled from the origin in the $x y$ plane

Extrinsic coordinates : $x(\theta, z)=(r \cos (\theta), r \sin (\theta), z)$
Problem: Bug no awareness of 3-space

- Choose $(0,0)$ as an intrinsic origin. There is 1 geodesic that will return there, so call that the base curve
- Choose +z as a direction \perp to the base curve

Intrinsic coordinates (geodesic rectangular coordinates) :
$y(w, z)=$ walk w units along base curve and turn 90 degrees to positive z-direction and travel z units.

Coordinates on a Cylinder

Extrinsic coordinates: $x(\theta, z)=(r \cos (\theta), r \sin (\theta), z)$
Equation of cylinder: $x^{2}+y^{2}=r^{2}$ in \mathbb{R}^{3}
Intrinsic coordinates:
Geodesic rectangular coordinates: $y(w, z)=$ walk w units along base curve and turn 90 degrees to positive z-direction and travel z units.

Coordinates on a Cylinder

Extrinsic coordinates: $x(\theta, z)=(r \cos (\theta), r \sin (\theta), z)$
Equation of cylinder: $x^{2}+y^{2}=r^{2}$ in \mathbb{R}^{3}
Intrinsic coordinates:
Geodesic rectangular coordinates: $y(w, z)=$ walk w units along base curve and turn 90 degrees to positive z-direction and travel z units.
Geodesic polar coordinates: $\boldsymbol{y}(\alpha, \boldsymbol{s})=$ turn α degrees from the base curve and walk s units along that geodesic

