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Hyperbolic Geometry: Annulus Model Coordinates (w , s)

Annulus model is limit as δ → 0
no extrinsic coordinates—no embedding

w–base curve horocycle
s is ⊥–λ, µ curves are (radial) geodesics by symmetry
Length decreases by r

r+δ each time a strip is crossed, and
at x(d , c) we’ve crossed c

δ annular strips
distance between λ and µ goes from d along base curve to
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Hyperbolic Geometry: Area
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Hyperbolic “Squares”
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