Gauss Curvature of Auger and Strake

Gauss Curvature of Auger and Strake

Hyperbolic Geometry

Dr. Sarah Math 4140/5530: Differential Geometry

★ 臣 ▶ ★ 臣 ▶ 二 臣

Hyperbolic Geometry

No not that geometry! (hyperbola),

E → < E → </p>

э

Hyperbolic Geometry

No not that geometry! (hyperbola), although is named for a hyperboloid because of a connection of one analytic model to it

Hyperbolic Geometry: Annulus Model

Dr. Sarah Math 4140/5530: Differential Geometry

문▶ 문

Hyperbolic Geometry: Annulus Model

no extrinsic coordinates—no embedding

Dr. Sarah Math 4140/5530: Differential Geometry

▲御▶ ▲臣▶ ★臣▶ 三臣 - 釣�♡

no extrinsic coordinates—no embedding

Annulus model is limit as $\delta \rightarrow \mathbf{0}$

- w-base curve horocycle
- s is $\perp -\lambda, \mu$ curves are (radial) geodesics by symmetry

Annulus model is limit as $\delta \rightarrow \mathbf{0}$

no extrinsic coordinates—no embedding

Dr. Sarah Math 4140/5530: Differential Geometry

Annulus model is limit as $\delta \rightarrow 0$

- no extrinsic coordinates—no embedding
- w-base curve horocycle
- s is $\perp -\lambda, \mu$ curves are (radial) geodesics by symmetry

Annulus model is limit as $\delta \rightarrow 0$

- no extrinsic coordinates—no embedding
- w-base curve horocycle
- s is $\perp -\lambda, \mu$ curves are (radial) geodesics by symmetry
- Length decreases by ^r/_{r+δ} each time a strip is crossed, and at x(d, c) we've crossed

Annulus model is limit as $\delta \rightarrow 0$

- no extrinsic coordinates—no embedding
- w-base curve horocycle
- *s* is $\perp -\lambda, \mu$ curves are (radial) geodesics by symmetry
- Length decreases by ^r/_{r+δ} each time a strip is crossed, and at x(d, c) we've crossed ^c/_δ annular strips
- distance between λ and μ goes from d along base curve to

$$\lim_{\delta\to 0} d(\frac{r}{r+\delta})^{\frac{c}{\delta}} = \dots$$

Annulus model is limit as $\delta \rightarrow 0$

- no extrinsic coordinates—no embedding
- w-base curve horocycle
- s is $\perp -\lambda, \mu$ curves are (radial) geodesics by symmetry
- Length decreases by ^r/_{r+δ} each time a strip is crossed, and at x(d, c) we've crossed ^c/_δ annular strips
- distance between λ and μ goes from *d* along base curve to

Friends dan't led

$$\lim_{\delta \to 0} d(\frac{r}{r+\delta})^{\frac{c}{\delta}} = \dots$$

Annulus model is limit as $\delta \rightarrow 0$

- no extrinsic coordinates—no embedding
- w-base curve horocycle
- s is $\perp -\lambda, \mu$ curves are (radial) geodesics by symmetry
- Length decreases by ^r/_{r+δ} each time a strip is crossed, and at x(d, c) we've crossed ^c/_δ annular strips
- distance between λ and μ goes from *d* along base curve to

Friends dan't led

$$\lim_{\delta\to 0} d(\frac{r}{r+\delta})^{\frac{c}{\delta}} = \dots$$

 $= de^{-\frac{c}{r}}$

Hyperbolic Geometry: More Models

э

- < ⊒ >

Hyperbolic Geometry: Area

▲ 臣 ▶ ▲ 臣 ▶ …

æ

Hyperbolic "Squares"

(ロ) (四) (モ) (モ) (モ) (モ)

Dr. Sarah Math 4140/5530: Differential Geometry

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで