Surfaces in \mathbb{R}^3

- Let x (u, v) be an extrinsic parametrization in R³ Cone: x (u, v) = (vcos(u), vsin(u), v) Cylinder: x (θ, z) = (cos(θ), sin(θ), z)
- \vec{x}_u and \vec{x}_v are tangent vectors
- The *unit normal* to the surface at a point is $U = \frac{\vec{x}_U \times \vec{x}_V}{|\vec{x}_U \times \vec{x}_V|}$
- If κ_α is the curvature vector for a curve α(t) on the surface then the *normal curvature* is the projection onto U:
 κ_n = (U · κ_α)U
- The *geodesic curvature* is what is felt by the bug (in the tangent plane T_pM): $\vec{r} = \vec{r}$

$$\vec{\kappa}_{g} = \vec{\kappa}_{\alpha} - \vec{\kappa}_{n}$$

- $\vec{\kappa}_{\alpha}$ pink dashed thickness 1
- $\vec{\kappa}_n$ black solid thickness 2

 $\vec{\kappa}_g$ tan dashdot style thickness 4

- The *unit normal* to the surface at a point is $U = \frac{\vec{x}_U \times \vec{x}_V}{|\vec{x}_U \times \vec{x}_V|}$
- If κ_α is the curvature vector for a curve α(t) on the surface then the *normal curvature* is the projection onto U:

$$\vec{\kappa}_n = (U \cdot \vec{\kappa}_\alpha) U$$

• The *geodesic curvature* is what is felt by the bug (in the tangent plane $T_p M$): $\vec{\kappa}_q = \vec{\kappa}_\alpha - \vec{\kappa}_n$