Match the physical/geometric description in column 2 that is numbered 1–9 to a name in column 1 and a formula in column 3. If the description contains the word <u>certain</u> then clarify which vector or plane "certain" refers to.

torsion τ	1. how fast we are traveling along the curve in time	$\frac{\frac{T'(t)}{ \alpha'(t) }}{\left \frac{T'(t)}{ \alpha'(t) }\right }$
acceleration	2. how fast a <u>certain</u> tangent vector is changing in space and the deviation of the curve from being a straight line	$-\frac{B'(t)}{ \alpha'(t) } \cdot N$
T'(s)	3. how far we are traveling along the curve in space	$(\frac{d^2\alpha^1}{dt^2},\frac{d^2\alpha^2}{dt^2},\frac{d^2\alpha^3}{dt^2})$
B'(s)	4. captures the movement of a <u>certain</u> tangent in time	$-\tau N$
arc length	5. how fast we are twist- ing out of a <u>certain</u> plane in space	κN
speed	6. captures the movement of a <u>certain</u> tangent in space	$\int \alpha'(t) dt$
N'(s)	7. captures the movement of a <u>certain</u> plane in space	$ \frac{T'(t)}{ \alpha'(t) } $
curvature κ	8. unit vector lies along the direction which the curve is currently bending in	$-\kappa T + \tau B$
normal N	9. turns away from a <u>certain</u> tangent and toward a <u>certain</u> binormal	$\sqrt{(\frac{d\alpha^1}{dt})^2 + (\frac{d\alpha^2}{dt})^2 + (\frac{d\alpha^3}{dt})^2}$