- 1. $f(x): \mathbb{R} \to \mathbb{R}$ is continuous at x_0 if
 - a) $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x, |x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \epsilon$
 - b) $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } x \in (x_0 \delta, x_0 + \delta) \Rightarrow f(x) \in (f(x_0) \epsilon, f(x_0) + \epsilon)$
 - c) $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } (x_0 \delta, x_0 + \delta) \subseteq f^{-1}(f(x_0) \epsilon, f(x_0) + \epsilon)$
 - d) All of the above
 - e) More than one answer from a, b and c holds, but not all three
- 2. Does the following argument demonstrate that \mathbb{R}_l is not contained in \mathbb{R} ?

Look at $0 \in [0, 1)$, which is a basis element of \mathbb{R}_l . For any basis element in \mathbb{R} , say (a,b), if $0 \in (a,b)$ then a < 0. Hence $\frac{a}{2} \in (a,b)$, but $\frac{a}{2} < 0$, and so $\frac{a}{2} \notin [0,1)$. Thus $(a,b) \nsubseteq [0,1)$, and so \mathbb{R}_l is not contained in \mathbb{R} .

- a) Yes it does
- b) This argument does not demonstrate that, but there is an argument that does.
- c) It is not possible to demonstrate since \mathbb{R}_l is contained in \mathbb{R}
- 3. Which of the following are continuous?
 - a) If X has the discrete topology, then any function mapping X to any Y.
 - b) $f: \mathbb{R} \to \mathbb{R}_l$ given by f(x) = x
 - c) $f: \mathbb{R}_l \to \mathbb{R}$ given by f(x) = x
 - d) All of the above
 - e) More than one answer from a, b and c holds, but not all three
- 4. Which of the following are true about open sets?
 - a) An open set is a set which is not closed
 - b) If (X, τ) is a topology with a basis, then an open set $U \in \tau$ is a set so that for each $x \in U$, \exists a basis element B_x so that $x \in B_x \subseteq U$. Since the arbitrary union of open basic sets is open, we can think of an open set as the union of all B_x , and in this way think of U as being made up of snapshots of basic opens.
 - c) One of the great skills mathematicians develop is to break problems up into smaller pieces that are easier to work on. In topology we do the same thing - lots of times it is hard to prove something about a big space, and so we take a little snapshot of it and analyze things locally (via open sets).
 - d) All of the above
 - e) More than one answer from a, b and c holds, but not all three
- 5. Which of the following are true about closed sets.
 - a) A closed set C is a set whose complement $X \setminus C$ is open
 - b) The arbitrary union of closed sets is closed.
 - c) The arbitrary intersection of closed sets is closed.
 - d) Any of the above are possible
 - e) More than one answer from a, b and c holds, but not all three

- 6. Which of the following are true about closed sets?
 - a) In the lower limit topology on R, [a,b) is both open and closed.
 - b) In the discrete topology on R, [a,b) is both open and closed.
 - c) In the cofinite topology on R (the same as the Zariski topology on R), [a,b) is neither open nor closed.
 - d) Any of the above are possible
 - e) More than one answer from a, b and c holds, but not all three
- 7. Can an orange peel be flattened in a way that shows that an orange peel is homeomorphic to a plane?
 - a) No it must be cut or have far away areas glued together before stretching, violating continuity
 - b) Yes
- 8. Which of the following are topologically equivalent to a donut?
 - a) mug with one handle
 - b) mug with two handles
 - c) ball
 - d) vest
- 9. Which of the following are Hausdorff?
 - 1. \mathbb{R}^n with the standard topology.
 - 2. Any set with the discrete topology.
 - 3. The Sierpinski space.
 - 4. The natural numbers with the cofinite topology.
 - 5. Any space with a sequence that converges to two different points.
 - 6. Any metrizable space with the topology induced from the metric.
 - a) all of the above
 - b) all but 3
 - c) all but 3 and 5
 - d) Just 1, 2, and 6
 - e) Just 1 and 2
- 10. Which are homeomorphic to \mathbb{R} with the standard topology?
 - a) (-1,1)
 - b) [0,1)
 - c) [0,1]
 - d) \mathbb{R}_l
 - e) none of the above

- 11. Which of the following pairs are homeomorphic?
 - 1. Sierpinski space $\sim \{0,1\}_{\mbox{discrete}}$? 2. $[1,2) \sim \{0\} \cup (1,2)$?

 - a) both pairs 1 and 2
 - b) just pair 1
 - c) just pair 2
 - d) neither pair
- 12. Which of the following are true regarding connected spaces?
 - 1. A space is connected if there does not exist a separation of X
 - 2. Every subspace of a connected space is connected
 - 3. The arbitrary union of a family of connected subspaces is connected
 - a) Just 1
 - b) Just 1 and 2
 - c) Just 1 and 3
 - d) All are true
 - e) None are true
- 13. Which of the following are true regarding connected spaces?
 - 1. The lower limit topology on \mathbb{R} is not connected, but the standard topology on \mathbb{R} is connected.
 - 2. To prove that [0,1] is connected, we assumed for contradiction that it is disconnected, and then arrive at a contradiction because the least upper bound of the set not containing 1 is not in either of the open sets separating [0,1].
 - 3. If $f: X \to Y$ is a continuous surjection and Y is connected, then X is connected.
 - a) Just 1
 - b) Just 1 and 2
 - c) Just 1 and 3
 - d) All are true
 - e) None are true