1. $f(x): \mathbb{R} \rightarrow \mathbb{R}$ is continuous at x_{0} if
a) $\exists \epsilon>0$, s.t. $\forall \delta>0$ and $\forall x,\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$
b) $\forall \epsilon>0, \exists \delta>0$ s.t. $\forall x,\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$
c) $\forall \epsilon>0, \exists \delta>0$ s.t. $\forall x, d^{\prime}\left(x, x_{0}\right)<\delta \Rightarrow d^{\prime}\left(f(x), f\left(x_{0}\right)\right)<\epsilon$
d) All of the above
e) More than one answer from a, b and c holds, but not all three
2. Which of the following hold?
a) $f\left(C_{1} \cap C_{2}\right)=f\left(C_{1}\right) \cap f\left(C_{2}\right)$
b) $f\left(C_{1} \cup C_{2}\right)=f\left(C_{1}\right) \cup f\left(C_{2}\right)$
c) $f\left(C_{1} \cap C_{2}\right) \subseteq f\left(C_{1}\right) \cap f\left(C_{2}\right)$
d) Only a) and b)
e) Only b) and c)
f) Only a) and c)
3. Which of the following are open sets?
a) An open interval in \mathbb{R}
b) An open diamond in \mathbb{R}^{2}
c) An open diamond in $\mathbb{R}_{\text {taxicab }}^{2}$
d) Only a) and b)
e) Only a) and c)
f) All of the above: a), b) and c)
4. In a successful proof that $B_{d}(x, \epsilon)$ is open, if $y \in B_{d}(x, \epsilon)$, what δ can you take for $B_{d}(y, \delta)$ to be in $B_{d}(x, \epsilon) ?$
a) Take $\delta=\epsilon$
b) Take $\delta=\epsilon-d(x, y)$
c) Take $\delta=d(x, y)-\epsilon$
d) Any of the above are possible
e) It is not possible to choose a δ successfully because the set is not open
5. What sets are open in the discrete metric on X ?
a) No sets are open
b) Only circles of radius 1 are open
c) Any subset of X is open
d) Other
