1. $f(x) : \mathbb{R} \to \mathbb{R}$ is continuous at x_0 if

- a) $\exists \epsilon > 0, s.t. \forall \delta > 0$ and $\forall x, |x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \epsilon$
- b) $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x, |x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \epsilon$
- c) $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x, d'(x, x_0) < \delta \Rightarrow d'(f(x), f(x_0)) < \epsilon$
- d) All of the above
- e) More than one answer from a, b and c holds, but not all three
- 2. Which of the following hold?
 - a) $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$
 - b) $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$
 - c) $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$
 - d) Only a) and b)
 - e) Only b) and c)
 - f) Only a) and c)
- 3. Which of the following are open sets?
 - a) An open interval in \mathbb{R}
 - b) An open diamond in \mathbb{R}^2
 - c) An open diamond in $\mathbb{R}^2_{\text{taxicab}}$
 - d) Only a) and b)
 - e) Only a) and c)
 - f) All of the above: a), b) and c)
- 4. In a successful proof that $B_d(x, \epsilon)$ is open, if $y \in B_d(x, \epsilon)$, what δ can you take for $B_d(y, \delta)$ to be in $B_d(x, \epsilon)$?
 - a) Take $\delta = \epsilon$
 - b) Take $\delta = \epsilon d(x, y)$
 - c) Take $\delta = d(x, y) \epsilon$
 - d) Any of the above are possible
 - e) It is not possible to choose a δ successfully because the set is not open
- 5. What sets are open in the discrete metric on X?
 - a) No sets are open
 - b) Only circles of radius 1 are open
 - c) Any subset of X is open
 - d) Other