- 1. For [0,1] inside \mathbb{R} with the standard topology, which is/are true?
 - a) $\{(\frac{1}{n}, 2)\}$ is a cover with no finite subcover
 - b) $\{(\frac{-1}{n}, 2)\}$ is a cover with no finite subcover
 - c) Both a) and b) are true
 - d) Neither a) nor b) are true
- 2. For the Cantor set inside \mathbb{R} with the standard topology, which is/are true?
 - a) It is bounded
 - b) The complement of the Cantor set, $(-\infty, 0) \cup (1, \infty) \cup \{\bigcup_{m=1}^{\infty} \bigcup_{k=0}^{3^{m-1}-1} (\frac{3k+1}{3^m}, \frac{3k+2}{3^m})\}$, is open
 - c) Both a) and b) are true
 - d) Neither a) nor b) are true
- 3. For the Cantor set with the subspace topology, which is/are true?
 - a) $\{\frac{1}{4}\}$ is an open set in the topology
 - b) The cantor set is not compact
 - c) Both a) and b) are true
 - d) Neither a) nor b) are true