

Archimedes (ca. 287-212 B.C.) -
-Two extant works are devoted to geometry of three dimensions-
On the Sphere and Cylinder \& On Conoids and Spheroids proved that the area of a sphere equals four times that of a great circle $\&$ the volume and surface of a sphere equals two-thirds that of the cylinder that inscribes it [3]

Eratosthenes (ca. 276 B.C.) -

Measurement of the Earth

His calculation was within 1% of current

Menelaus (ca. A.D. 100)~
-First appearance of a definition for a spherical triangle in Sphaerica: 3 Book treatise develops spherical trigonometry of the times-

ARABIAN PENINSULA '1000-1250 AD'

Abual-Wefa al-Buzjaní (ca. 1000) -
-Discovers Law of Sines for Spherical Triangles

al-Jayyani (ca. 1060) - The Book of Unknown Arcs of a Sphere -Spherical Trigonometry brought to modern form -

Nasir ed-din (ca. 1250)-

-First work on plane and spherical trigonometry considered índependently of astronomy-

1The works of these mathematicians introduced Western Europe to modern spherical trigonometry[4]

$$
\begin{aligned}
& \text { EUROPE } \\
& \prime 1250-1600^{\prime}
\end{aligned}
$$

Rise of the Christian Schools-
Early universities reserved for educating priesthood
Geometry plays mínor role: Used for surveying [3]

> EUROPE
> 'CA 1600-1850'

Napier (ca. 1600)-
Napier's Círcle (pictured)
 How it works

禺
Napier's Logaríthm Tables allow complex spherical trigonometric equations to be solved in a fraction of the time originally required

Royal Observatory at Greenwich England (1665)-

 -Founded to calculate the geographic position of heavenly bodies- anywhere on the globe using the sextant and spherical trigonometry

Navigation and Spherical Geometry

Rise of Universities -

-Practical need for study of warfare, navigation, and astronomy requires knowledge of spherical geometry-
-Printing press allows math texts to become affordable and available in many languages[3]-

Scroll through a spherical trigonometry text from 1833

NORTH AMERICAN SCHOOLS
 'CA 1900-PRESENT'

Plane geometry was not requíred for admission to Harvard and Yale until the last half of the $19^{\text {th }}$ Century [3]

A Call for Spherical Geometry (ca. 1940)-
-World War II illustrates a lack of spherical geometry education as American soldiers train to be pilots, navigators, gunners, and officers-
-Learning solid geometry is called a "patriotic duty" and it returns to high school curricula[5]-
"Spherical Trigonometry should be taught solely on its merits and not because it is needed in wartime emergency" [6] -Prof. McClennon, Grínnell College (1943)~

Spherical Geometry Excluded From Curricula (ca. 1970)-

- Computers simplify spherical trigonometric computations and eliminate the need to understand formulas and their derivations. Textbooks become rare[7]-
-Subjects that cease to be taught in universities will not be taught in lower grades[8]

齿
"Ease of computation should lead to an emphasis on theory"-Dr. Watkins San Jose State University [7]-

GLOBAL PERSPECTIVES
 'CA 1900-PRESENT'

Spherícal Rigidíty (ca. 1899)
-Any surface in 3-space with the same intrinsic geometry as a sphere, must be a sphere[12]-

vThis is useful when determining "shape" from a known geometry

Albert Einsteín (ca. 1917)

-Relativity theory consistent with a spherical universe [9]-

Hairy Ball Theorem (Present)

-Essentially: "It is impossible to comb the hairs on a sphere flat without producing a cowlick"

This theorem is used in computer graphic 3-D imaging where the "hairs"
 are vectors orthogonal to the surface of the sphere[10]

Spherical Harmonics (Present)
-Describe vibrations on a sphere-

1
Spherical Harmonics explains why a tidal wave that struck Martinique returned to the same area without being observed anywhere else [11]

Isoperimetric Inequality on a Sphere (Present)
-Relates area, volume, and their higher-order counterparts enclosed by a perimeter to the length of the perimeter...these "volumes" are maximized when the perimeter is a sphere-
1
This inequality explains why a drop of water takes the shape of a sphere [13]

Poincare Conjecture (Present)
-Essentially: If a loop on a surface can be "tightened" to a point, then that surface is a sphere-

This was not proved until 2006, a century after it was proposed [14]

REFERENCES:

[1] Absolute Astronomy Website. (2009). Eratosthenes. Retrieved Dec. 10, 2009, from http://www.absoluteastronomy.com/topics/Eratosthenes
[2] Eves, H. (1990). An Introduction to the History of Mathematics. Orlando: Saunders College Publishing.
[3] Stamper, A.W. (1906). A History of the Teaching of Elementary Geometry. New York: Columbia University Press.
[4] Hicks, R. (2007). Nautical Astronomy. In The Oxford Encyclopedia of Maritime History. (Vol. 2. pp. 619-638). Oxford: Oxford University Press.
[5] Hart, W. L. (1941). On Education for Service. The American Mathematical Monthly, Vol. 48, No. 6 (Jun. - Jul., 1941), pp. 351-418.
[6] McClenon, R. B. (1943). Spherical Trigonometry: An Emergency Course. National Mathematics Magazine, Vol. 18, No. 1 (Oct., 1943), pp. 1-48.
[7] Watkins, T. (2009). San Jose State Univ. Website. Spherical Geometry and Trigonometry. Retrieved Dec. 10, 2009, from http://www.sjsu.edu/faculty/watkins/sphere.htm
[8] Mammana, C. and Villani, V. (1998). Perspectives on the Teaching of Geometry for the 21 st Century. Kluwer Academic Publishers.
[9] Greenwald, S. J. (2009). Mathematics Awareness Month Website. The Shape of the Universe. Retrieved Dec. 10, 2009 from http://www.mathaware.org/mam/05/shape.of.universe.html
[10] Wikipedia Website. (2009). Hairy Ball Theorem. Retrieved Dec. 10, 2009, from http://en.wikipedia.org/wiki/Hairy_ball
[11] Berger, M. (2003). A Panoramic View of Riemannian Geometry. Springer Publishing.
[12] Greenwald, S. J. (2009) Conversation with the author.
[13] Wikipedia Website. (2009). Isoperimetric Inequality. Retrieved Dec. 10, 2009, from http://en.wikipedia.org/wiki/Isoperimetric_inequality
[14] Wikipedia Website. (2009). Poincare Conjecture. Retrieved Dec. 10, 2009, from http://en.wikipedia.org/wiki/Poincare_conjecture

