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SpaceTime-Time: General Relativity

We've been following the 1916 paper: “The Foundation of the
General Theory of Relativity”
@ Einstein replaced the corollary with
dex* Ly dxtdx”
ds2 "™ ds ds

° % & I, & similar roles: Field equations relate these
potential functions to the distribution of matter
@ Field equations written in the Christoffel symbols:

arx, ar
" 5+ rﬁ,\réﬁ — T3 =0

oxv  Ox*
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Solutions for General Relativity

https://history.aip.org/exhibits/einstein/images/ae65. jpg

@ 2nd order PDE 16 egs and 16 unknowns

@ Einstein: “Cosmological Considerations in the General
Theory of Relativity” (1917)
It remains now to determine those components of the
gravitational potential which define the purely spatial-geometrical
relations of our continuum (g11, g12... the curvature of the
required space must be constant...
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Solutions for General Relativity

https://history.aip.org/exhibits/einstein/images/ae65. jpg

@ 2nd order PDE 16 egs and 16 unknowns

@ Einstein: “Cosmological Considerations in the General
Theory of Relativity” (1917)
It remains now to determine those components of the
gravitational potential which define the purely spatial-geometrical
relations of our continuum (g11, g12... the curvature of the
required space must be constant... will be a spherical space.

@ Schwarzschild metric (1916), de Sitter: R x S® (1917)

@ Einstein & Rosen Schwarzschild — wormhole (1935)
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“Cosmological Considerations in the General Theory of
Relativity” (1917) https://einsteinpapers.press.
princeton.edu/volé-trans/441
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our i he uni ity of distribution of the
masses genenhng cha ﬁexd it follows that the curvatare of
the required space must be constant. With this distribution
of mass, therefore, the required finite continuum of the
23, &, &, with constant z,, will be a spherical space.

We arrive at such a space, for example, in the following
way. We start from a Euclidean space of four dimensions,
&, &, & &, with a linear element do; let, therefore,

do* = dE + db, +dE + dE, . . . (9
In this space we consider the hyper-surface
R=H+E+E+E . . . Q0

where R denotes a constant. The points of this hyper-surface
form a three-dimensional continuum, a spherical space of
radius of curvature

The four-dimensional Euclidean space with which we
started serves only for a convenient definition of our hyper-
surface. Only those points of the hyper-surface are of
interest to us which have metrical properties in agreement
with those of physical space with & uniform distribution of
matter. For the description of this three-dimensional con-
tinuam we may employ the co-ordinates &, &, £ (the pro-
jection upon the hyper-plane £ = 0) since, by reason of (10),
£, can be expressed in terms of &, £, &, * Eliminating £, from
(9), We obtain for the linear element of the spherical space

the expression
Ll 'mdfndi }
=8 + B —a

where 8, = 1,ifu = ;8. = 0,ifu 4 v,00dp* = £ + & + £
The co-ordinates chosen are convenient when it is & question
of examining the environment of one of the two points
=&H=&=0
Now the linear element of the required four-dimensional
space-time universe is also given us. For the potential g,
both indices of which differ from 4, we have to set

Gur = = (3,. + g
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