- 1. Is a latitude (horizontal circle) on a cone a geodesic
 - a) Yes, for all cone angles, and I have a good reason why
 - b) Yes, for some but not all cone angles, and I have a good reason why
 - c) Never and I have a good reason why
 - d) Yes but I am unsure of why
 - e) No but I am unsure of why

Recognizing Geodesics on Cone using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{\textit{n}}, \vec{\kappa}_{\textit{g}}$

 $x(u, v) = (u \cos v, u \sin v, u)$ role of parameters?

Recognizing Geodesics on Cone using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{n}, \vec{\kappa}_{g}$

 $x(u, v) = (u \cos v, u \sin v, u)$ role of parameters? normal U to the surface?

Recognizing Geodesics on Cone using $\vec{\kappa}_{\alpha}, \vec{\kappa}_{n}, \vec{\kappa}_{g}$

$$x(u,v)=(u\cos v,u\sin v,u)$$

role of parameters? normal *U* to the surface?

$$\vec{x}_u = (\cos v, \sin v, 1), \vec{x}_v = (-u \sin v, u \cos v, 0).$$

$$U = \frac{\vec{x}_u \times \vec{x}_v}{|\vec{x}_u \times \vec{x}_v|} = \frac{1}{u\sqrt{2}}(-u\cos v, -u\sin v, u) = \frac{1}{\sqrt{2}}(-\cos v, -\sin v, 1)$$

Recognizing Geodesics on Cone using $\vec{\kappa}_{\alpha}$, $\vec{\kappa}_{n}$, $\vec{\kappa}_{\alpha}$

 $x(u, v) = (u \cos v, u \sin v, u)$

role of parameters? normal *U* to the surface?

$$\vec{x}_u = (\cos v, \sin v, 1), \vec{x}_v = (-u \sin v, u \cos v, 0).$$

$$U = \frac{\vec{x}_{u} \times \vec{x}_{v}}{|\vec{x}_{u} \times \vec{x}_{v}|} = \frac{1}{u\sqrt{2}}(-u\cos v, -u\sin v, u) = \frac{1}{\sqrt{2}}(-\cos v, -\sin v, 1)$$

 $\vec{\kappa}_{\alpha}$ (curve's curvature vector): $\frac{T'(t)}{|\alpha'(t)|}$ pink dashed thickness 1

 $\vec{\kappa}_n$ (normal curvature): $(U \cdot \vec{\kappa}_{\alpha})U$ black solid thickness 2

 $\vec{\kappa}_{\alpha}$ (geodesic curvature): $\vec{\kappa}_{\alpha}$ - $\vec{\kappa}_{n}$ tan dashdot style thickness 4

2. How many different geodesics are there between A and B on this cone that has an angle a bit less than $\frac{\pi}{2}$?

- a) less than 4
- b) 4
- c) more than 4

Next, what are the shapes of the geodesics between A and B on this cone? Sketch each on a cone and include in your sketch —front or back of the cone (or both)

—any intersections of a geodesic with itself

What happens when a bug gets to the cone point along this vertical geodesic?

- a) The geodesic ends there.
- b) The bug can continue to walk straight through the cone point to the "other side" by bisecting the cone angle there.
- c) other

What happens when a bug gets to the cone point along this vertical geodesic?

- a) The geodesic ends there.
- b) The bug can continue to walk straight through the cone point to the "other side" by bisecting the cone angle there.
- c) other

4. Which is an equation of a geodesic that an arbitrary point $y(\theta,r)$ satisfies, where d and β are defined as in the hw and following picture:

- a) $r = d \sec(\theta \beta)$
- b) $d = r \sec(\theta \beta)$
- c) both
- d) other

- 5. In general on a cone of small enough cone angle, a geodesic
 - a) won't intersect itself
 - b) will intersect itself a finite number of times with a maximum crossing number that depends on the specific cone angle
 - c) will intersect itself infinitely many times

- 5. In general on a cone of small enough cone angle, a geodesic
 - a) won't intersect itself
 - b) will intersect itself a finite number of times with a maximum crossing number that depends on the specific cone angle
 - c) will intersect itself infinitely many times

6. Extend the $\frac{5\pi}{2}$ cone in all directions so that it continues indefinitely. Can we find a point P (other than the cone point) and a geodesic I (not through the cone point) such that there is more than 1 geodesic through P that does not intersect I?

- a) yes and I can sketch a diagram
- b) no and I can explain why not
- c) other

6. Extend the $\frac{5\pi}{2}$ cone in all directions so that it continues indefinitely. Can we find a point P (other than the cone point) and a geodesic I (not through the cone point) such that there is more than 1 geodesic through P that does not intersect I?

- a) yes and I can sketch a diagram
- b) no and I can explain why not
- c) other

• Surface $\mathbf{x}(u, v)$ and curve $\alpha(t)$ on it given by u(t) & v(t). $\alpha'(t) =$

• Surface $\mathbf{x}(u, v)$ and curve $\alpha(t)$ on it given by u(t) & v(t). $\alpha'(t) = \vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}$

• Surface $\mathbf{x}(u, v)$ and curve $\alpha(t)$ on it given by u(t) & v(t). $\alpha'(t) = \vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}$ $(\frac{ds}{dt})^2 = |\alpha'(t)|^2 = \alpha'(t) \cdot \alpha'(t) =$

• Surface $\mathbf{x}(u, v)$ and curve $\alpha(t)$ on it given by u(t) & v(t). $\alpha'(t) = \vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}$ $(\frac{ds}{dt})^2 = |\alpha'(t)|^2 = \alpha'(t) \cdot \alpha'(t) = (\vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}) \cdot (\vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt})$

• Surface $\mathbf{x}(u, v)$ and curve $\alpha(t)$ on it given by u(t) & v(t). $\alpha'(t) = \vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}$ $(\frac{ds}{dt})^2 = |\alpha'(t)|^2 = \alpha'(t) \cdot \alpha'(t) = (\vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}) \cdot (\vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt})$ $= \vec{x_u} \cdot \vec{x_u} (\frac{du}{dt})^2 + 2\vec{x_u} \cdot \vec{x_v} \frac{du}{dt} \frac{dv}{dt} + \vec{x_v} \cdot \vec{x_v} (\frac{dv}{dt})^2$

• Surface $\mathbf{x}(u, v)$ and curve $\alpha(t)$ on it given by u(t) & v(t). $\alpha'(t) = \vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}$ $(\frac{ds}{dt})^2 = |\alpha'(t)|^2 = \alpha'(t) \cdot \alpha'(t) = (\vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}) \cdot (\vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt})$ $= \vec{x_u} \cdot \vec{x_u} (\frac{du}{dt})^2 + 2\vec{x_u} \cdot \vec{x_v} \frac{du}{dt} \frac{dv}{dt} + \vec{x_v} \cdot \vec{x_v} (\frac{dv}{dt})^2$ $= E(\frac{du}{dt})^2 + 2F \frac{du}{dt} \frac{dv}{dt} + G(\frac{dv}{dt})^2$ $ds^2 = g_{11}(du^1)^2 + 2g_{12}du^1du^2 + g_{22}(du^2)^2 = \sum_{i,j} g_{ij}du^jdu^j$

• $\mathbf{x}(u, v) = (u, v, 0)$ compared to $\mathbf{x}(u, v) = (u \cos v, u \sin v, u)$