How do we find geodesics?

http://i.stack.imgur.com/La4Hj.png https://il.creativecow.net/u/1027/geodesicvoxel_binding.jpg

- covering
- symmetry
- proof on the sphere used the surface normal $U = \frac{\gamma}{R}$ in γ'' along with Frenet equations
- how about more generally?

How do we find geodesics?

http://i.stack.imgur.com/La4Hj.png https://i1.creativecow.net/u/1027/geodesicvoxel_binding.jpg

- covering
- symmetry
- proof on the sphere used the surface normal $U = \frac{\gamma}{R}$ in γ'' along with Frenet equations
- how about more generally?
- guess and check in Maple or computer software
- parallel transport—that a tangent vector stays parallel
- geodesic equations with Christoffel symbols (also useful for Einstein's field equations)

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$\alpha'(t)^{\text{chain rule}} \vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}$$

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$lpha'(t) \stackrel{\text{chain rule}}{=} \vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt}$$
 $lpha' = \vec{x_u} u' + \vec{x_v} v'$ or equivalently $\dot{\alpha} = \vec{x_u} \dot{u} + \vec{x_v} \dot{v}$
 $lpha'' = \ddot{\alpha}$

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$\alpha'(t)^{\text{chain rule}} \vec{x}_{u} \frac{du}{dt} + \vec{x}_{v} \frac{dv}{dt}$$

$$\alpha' = \vec{x}_{u} u' + \vec{x}_{v} v' \text{ or equivalently } \dot{\alpha} = \vec{x}_{u} \dot{u} + \vec{x}_{v} \dot{v}$$

$$\alpha'' = \ddot{\alpha}^{\text{product rule}} \frac{d}{dt} \vec{x}_{u} \dot{u} + \vec{x}_{u} \ddot{u} + \frac{d}{dt} \vec{x}_{v} \dot{v} + \vec{x}_{v} \ddot{v}$$

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$\begin{array}{l} \alpha'(t) \stackrel{\text{chain rule}}{=} \vec{x_u} \frac{du}{dt} + \vec{x_v} \frac{dv}{dt} \\ \alpha' = \vec{x_u} u' + \vec{x_v} v' \text{ or equivalently } \dot{\alpha} = \vec{x_u} \dot{u} + \vec{x_v} \dot{v} \\ \alpha'' = \ddot{\alpha} \stackrel{\text{product rule}}{=} \frac{d}{dt} \vec{x_u} \dot{u} + \vec{x_u} \ddot{u} + \frac{d}{dt} \vec{x_v} \dot{v} + \vec{x_v} \ddot{v} \\ \stackrel{\text{chain rule}}{=} (\vec{x_{uu}} \dot{u} + \vec{x_{uv}} \dot{v}) \dot{u} + \vec{x_u} \ddot{u} + \end{array}$$

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$\begin{array}{l} \alpha'(t) \stackrel{\text{chain rule}}{=} \vec{x_u} \frac{d u}{d t} + \vec{x_v} \frac{d v}{d t} \\ \alpha' = \vec{x_u} u' + \vec{x_v} v' \text{ or equivalently } \dot{\alpha} = \vec{x_u} \dot{u} + \vec{x_v} \dot{v} \\ \alpha'' = \ddot{\alpha} \stackrel{\text{product rule}}{=} \frac{d}{d t} \vec{x_u} \dot{u} + \vec{x_u} \ddot{u} + \frac{d}{d t} \vec{x_v} \dot{v} + \vec{x_v} \ddot{v} \\ \stackrel{\text{chain rule}}{=} (\vec{x_{uu}} \dot{u} + \vec{x_{uv}} \dot{v}) \dot{u} + \vec{x_u} \ddot{u} + (\vec{x_{vu}} \dot{u} + \vec{x_{vv}} \dot{v}) \dot{v} + \vec{x_v} \ddot{v} \end{array}$$

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$\alpha'(t) \stackrel{\text{chain rule}}{=} \vec{x_{u}} \frac{du}{dt} + \vec{x_{v}} \frac{dv}{dt}$$

$$\alpha' = \vec{X}_{u} u' + \vec{X}_{v} v' \text{ or equivalently } \dot{\alpha} = \vec{X}_{u} \dot{u} + \vec{X}_{v} \dot{v}$$

$$\alpha'' = \ddot{\alpha} \stackrel{\text{product rule}}{=} \frac{d}{dt} \vec{X}_{u} \dot{u} + \vec{X}_{u} \ddot{u} + \frac{d}{dt} \vec{X}_{v} \dot{v} + \vec{X}_{v} \ddot{v}$$

$$\stackrel{\text{chain rule}}{=} (\vec{X}_{uu} \dot{u} + \vec{X}_{uv} \dot{v}) \dot{u} + \vec{X}_{u} \ddot{u} + (\vec{X}_{vu} \dot{u} + \vec{X}_{vv} \dot{v}) \dot{v} + \vec{X}_{v} \ddot{v}$$

$$= \vec{X}_{uu} \dot{u}^{2} + 2\vec{X}_{uv} \dot{u} \dot{v} + \vec{X}_{u} \ddot{u} + \vec{X}_{vv} \dot{v}^{2} + \vec{X}_{v} \ddot{v}$$

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$\dot{\alpha} = \vec{x}_{u}\dot{u} + \vec{x}_{v}\dot{v}$$

$$\ddot{\alpha} = \vec{x}_{uu}\dot{u}^{2} + 2\vec{x}_{uv}\dot{u}\dot{v} + \vec{x}_{u}\ddot{u} + \vec{x}_{vv}\dot{v}^{2} + \vec{x}_{v}\ddot{v}$$

$$\vec{x}_{uu} = \vec{x}_{u} + \vec{x}_{v} + U$$

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$\dot{\alpha} = \vec{x}_{u}\dot{u} + \vec{x}_{v}\dot{v}$$

$$\ddot{\alpha} = \vec{x}_{uu}\dot{u}^{2} + 2\vec{x}_{uv}\dot{u}\dot{v} + \vec{x}_{u}\ddot{u} + \vec{x}_{vv}\dot{v}^{2} + \vec{x}_{v}\ddot{v}$$

$$\vec{x}_{uu} = \vec{x}_{u} + \vec{x}_{v} + U = \vec{x}_{u} + \vec{x}_{v} + IU$$

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$\dot{\alpha} = \vec{X}_{u}\dot{u} + \vec{X}_{v}\dot{v}$$

$$\ddot{\alpha} = \vec{X}_{uu}\dot{u}^{2} + 2\vec{X}_{uv}\dot{u}\dot{v} + \vec{X}_{u}\ddot{u} + \vec{X}_{vv}\dot{v}^{2} + \vec{X}_{v}\ddot{v}$$

$$\vec{X}_{uu} = _\vec{X}_{u} + _\vec{X}_{v} + _\vec{U} = _\vec{X}_{u} + _\vec{X}_{v} + IU = \Gamma_{uu}^{u}\vec{X}_{u} + \Gamma_{uu}^{v}\vec{X}_{v} + IU$$

$$\Gamma_{ab}^{c} \text{ called Christoffel symbols.}$$

 $\{\vec{x}_u, \vec{x_v}, U\}$ is a basis for \mathbb{R}^3

$$\begin{split} \dot{\alpha} &= \vec{X}_{u}\dot{u} + \vec{X}_{v}\dot{v} \\ \ddot{\alpha} &= \vec{X}_{uu}\dot{u}^{2} + 2\vec{X}_{uv}\dot{u}\dot{v} + \vec{X}_{u}\ddot{u} + \vec{X}_{vv}\dot{v}^{2} + \vec{X}_{v}\ddot{v} \\ \vec{X}_{uu} &= -\vec{X}_{u} + -\vec{X}_{v} + -U = -\vec{X}_{u} + -\vec{X}_{v} + IU = \Gamma_{uu}^{u}\vec{X}_{u} + \Gamma_{uu}^{v}\vec{X}_{v} + IU \\ \Gamma_{ab}^{c} \text{ called Christoffel symbols. } \vec{X}_{uv} &= \Gamma_{uv}^{u}\vec{X}_{u} + \Gamma_{vv}^{v}\vec{X}_{v} + mU = \vec{X}_{vu}. \end{split}$$

Geodesic Equations

set \vec{x}_u , \vec{x}_v components = 0.

$$\ddot{u} + \Gamma^{u}_{vu}\dot{u}^{2} + 2\Gamma^{u}_{vv}\dot{v}\dot{u} + \Gamma^{u}_{vv}\dot{v}^{2} = 0 \text{ or } \ddot{x}^{1} + \Gamma^{1}_{bc}\dot{x}^{b}\dot{x}^{c} = 0$$

$$\ddot{v} + \Gamma^{v}_{vu}\dot{u}^{2} + 2\Gamma^{v}_{vv}\dot{v}\dot{u} + \Gamma^{v}_{vv}\dot{v}^{2} = 0 \text{ or } \ddot{x}^{2} + \Gamma^{2}_{bc}\dot{x}^{b}\dot{x}^{c} = 0$$

Geodesic Equations set \vec{x}_u , $\vec{x_v}$ components = 0.

$$\ddot{u} + \Gamma^{u}_{uu}\dot{u}^{2} + 2\Gamma^{u}_{uv}\dot{v}\dot{u} + \Gamma^{u}_{vv}\dot{v}^{2} = 0 \text{ or } \ddot{x}^{1} + \Gamma^{1}_{bc}\dot{x}^{b}\dot{x}^{c} = 0$$

$$\ddot{v} + \Gamma^{v}_{uu}\dot{u}^{2} + 2\Gamma^{v}_{uv}\dot{v}\dot{u} + \Gamma^{v}_{vv}\dot{v}^{2} = 0 \text{ or } \ddot{x}^{2} + \Gamma^{2}_{bc}\dot{x}^{b}\dot{x}^{c} = 0$$

Or even more Einstein summation notation! $\ddot{x}^a + \Gamma^a_{bc}\dot{x}^b\dot{x}^c = 0$

Elwin Bruno Christoffel and Albert Einstein

http://www.ethbib.ethz.ch/aktuell/galerie/christoffel/Portr_gross.jpg http://scienceblogs.com/startswithabang/files/2013/07/einstein.jpg Rewrite \vec{x}_{uu} by taking uth partial of $E = \vec{x}_u \cdot \vec{x}_u$

 $E_{u} =$

Elwin Bruno Christoffel and Albert Einstein

http://www.ethbib.ethz.ch/aktuell/galerie/christoffel/Portr_gross.jpg Rewrite \vec{x}_{uu} by taking uth partial of $E = \vec{x}_u \cdot \vec{x}_u$

Rewrite
$$\vec{x}_{uu}$$
 by taking *u*th partial of $E = \vec{x}_u \cdot \vec{x}_u$

$$E_{\text{U}} = \vec{x}_{\text{UU}} \cdot \vec{x}_{\text{U}} + \vec{x}_{\text{U}} \cdot \vec{x}_{\text{UU}} = 2\vec{x}_{\text{UU}} \cdot \vec{x}_{\text{U}}$$

Elwin Bruno Christoffel and Albert Einstein

http://www.ethbib.ethz.ch/aktuell/galerie/christoffel/Portr_gross.jpg http://scienceblogs.com/startswithabang/files/2013/07/einstein.jpg Rewrite \vec{x}_{uu} by taking uth partial of $\vec{E} = \vec{x}_u \cdot \vec{x}_u$

Frewhite
$$\vec{x}_{ijj}$$
 by taking but partial of $\vec{L} = \vec{x}_{ij}$
 $\vec{E}_{ij} = \vec{x}_{ijj} \cdot \vec{x}_{ij} + \vec{x}_{ij} \cdot \vec{x}_{ijj} = 2\vec{x}_{ijj} \cdot \vec{x}_{ij}$

Also from a few slides up, $\vec{x}_{uu} = \Gamma^{u}_{uu}\vec{x}_{u} + \Gamma^{v}_{uu}\vec{x}_{v} + IU$, so

$$\vec{x}_{uu} \cdot \vec{x}_{u} =$$

Elwin Bruno Christoffel and Albert Einstein

Rewrite \vec{x}_{uu} by taking uth partial of $E = \vec{x}_u \cdot \vec{x}_u$

Rewrite
$$\vec{x}_{uu}$$
 by taking *u*th partial of $E = \vec{x}_u \cdot \vec{x}_u$

$$E_{u} = \vec{x}_{uu} \cdot \vec{x}_{u} + \vec{x}_{u} \cdot \vec{x}_{uu} = 2\vec{x}_{uu} \cdot \vec{x}_{u}$$

Also from a few slides up, $\vec{x}_{uu} = \Gamma^{u}_{uu}\vec{x}_{u} + \Gamma^{v}_{uu}\vec{x}_{v} + IU$, so

$$\vec{x}_{uu} \cdot \vec{x}_{u} = \Gamma^{u}_{uu} \vec{x}_{u} \cdot \vec{x}_{u} = \Gamma^{u}_{uu} E$$

Elwin Bruno Christoffel and Albert Einstein

Rewrite
$$\vec{x}_{uu}$$
 by taking u th partial of $E = \vec{x}_u \cdot \vec{x}_u$

$$E_{u} = \vec{x}_{uu} \cdot \vec{x}_{u} + \vec{x}_{u} \cdot \vec{x}_{uu} = 2\vec{x}_{uu} \cdot \vec{x}_{u}$$

Also from a few slides up,
$$\vec{x}_{uu} = \Gamma^{u}_{uu}\vec{x}_{u} + \Gamma^{v}_{uu}\vec{x}_{v} + IU$$
, so

$$\vec{x}_{uu} \cdot \vec{x}_{u} = \Gamma^{u}_{uu} \vec{x}_{u} \cdot \vec{x}_{u} = \Gamma^{u}_{uu} E$$

Thus
$$\frac{E_u}{2} = \vec{x}_{uu} \cdot \vec{x}_u = \Gamma^u_{uu} E$$
 so $\Gamma^u_{uu} = \frac{E_u}{2E}$

Elwin Bruno Christoffel and Albert Einstein

Rewrite \vec{x}_{uu} by taking uth partial of $E = \vec{x}_u \cdot \vec{x}_u$

Rewrite
$$\vec{x}_{uu}$$
 by taking uth partial of $\vec{E} = \vec{x}_u \cdot \vec{x}_u$

$$E_{u} = \vec{x}_{uu} \cdot \vec{x}_{u} + \vec{x}_{u} \cdot \vec{x}_{uu} = 2\vec{x}_{uu} \cdot \vec{x}_{u}$$

Also from a few slides up,
$$\vec{x}_{uu} = \Gamma^{u}_{uu}\vec{x}_{u} + \Gamma^{v}_{uu}\vec{x}_{v} + IU$$
, so

$$\vec{x}_{uu} \cdot \vec{x}_{\underline{u}} = \Gamma^{u}_{uu} \vec{x}_{u} \cdot \vec{x}_{u} = \Gamma^{u}_{uu} E$$

Thus
$$\frac{E_u}{2} = \vec{x}_{uu} \cdot \vec{x}_u = \Gamma^u_{uu} E$$
 so $\Gamma^u_{uu} = \frac{E_u}{2E}$

Similarly
$$\Gamma^{v}_{uu}=-rac{E_{v}}{2G}, \Gamma^{u}_{uv}=rac{E_{v}}{2E}, \Gamma^{v}_{uv}=rac{G_{u}}{2G}, \Gamma^{u}_{vv}=rac{G_{u}}{2E}, \Gamma^{v}_{vv}=rac{G_{v}}{2G}$$

Solving the Geodesic Equations?

$$\ddot{x}^a + \Gamma^a_{bc} \dot{x}^b \dot{x}^c = 0$$

- differential equations expressed in intrinsic coordinates
- theoretical importance in mathematics and physics in analytic treatments of geodesics
- in practice, these equations can rarely be solved, except approximately (numerically)
- conetorusgeos.mw adapted from demo by John Oprea

In Higher Dimensions? Tensors and the Metric Tensor g_{ij}

't'	3	1	4	1
'e'	5	9	2	6
'n'	5	3	5	8
's'	9	7	9	3
'o'	2	3	8	4
'r'	6	2	6	4

towardsdatascience.com/a-beginner-introduction-to-tensorflow-part-1-6d139e038278

lists #s vectors stack of matrices

- algebraic combinations of vectors, matrices, vector spaces, algebras, modules or other structures
- often geometrically meaningful
- not all tensors are inherently linear maps

 g_{ij} inner products of tangent vectors $\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$

$$g^{ij}=g_{ij}^{-1}=egin{bmatrix} E & F \ F & G \end{bmatrix}^{-1}=rac{1}{EG-F^2}egin{bmatrix} G & -F \ -F & E \end{bmatrix}_{i}$$

SpaceTime-Time: Special Relativity

- I - 45 - 54 - 74 00E)

Albert Einstein special relativity (1905) Hermann Minkowski 4D spacetime model (1908)

surfaces: g_{ij} inner products of tangent vectors $w^T g_{ij} v$

$$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$$

spacetime: metric tensor is now $4x4^{\prime}$ symmetric matrix acting as $w^{T}g_{ii}v$ on (t, x, y, z) vectors. Yardstick plus clock!

Minkowski SpaceTime Model

http://jokerific.com/wp-content/uploads/2014/08/einstein-space-time-theory-joke.jpg

In Higher Dimensions? Keep on Summing!

metric form

$$ds^2 = g_{ab}dx^a dx^b$$

Christoffel symbols

$$\Gamma^a_{bc} = rac{1}{2} g^{ad} (\partial_b g_{dc} + \partial_c g_{db} - \partial_d g_{bc}).$$

Riemann curvature tensor or Riemann-Christoffel tensor

$$R^a_{bcd} = \partial_c \Gamma^a_{bd} - \partial_d \Gamma^a_{bc} + \Gamma^e_{bd} \Gamma^a_{ec} - \Gamma^e_{bc} \Gamma^a_{ed}$$
 Ricci tensor $R_{ab} = R^c_{acb} = g^{cd} R_{dacb}$ Scalar curvature $R = g^{ab} R_{ab}$ Einstein tensor $G_{ab} = R_{ab} - rac{1}{2} g_{ab} R$

Christoffel Symbols and Curvatures

The Christoffel symbols

- intrinsic quantities, how to take covariant derivatives
- coefficients of tangent vectors (connection coefficients)
- measure whether or not vectors are parallel transports
- in relativity, gravitational forces. geodesics and curvatures.

Riemann curvature tensor: measures how much a manifold is not flat via $4^4 = 256$ entries for spacetime.

Ricci tensor: trace (sum of diagonal elements) relates to the metric volume $\sqrt{detg_{ij}}$.

Scalar curvature: number. For surfaces—twice Gaussian curvature. For relativity—Lagrangian density.

Einstein tensor describes curvature of spacetime due to the presence of energy or mass, has zero divergence

SpaceTime-Time: Other SpaceTimes

http://www.spacetime-model.com/img/mass/einstein.jpg

4D Manifold, g_{ij} , curvature satisfy Einstein field equation g_{ij} can be other 4x4 symmetric matrices acting as $w^Tg_{ij}v$. g_{ij} 1 eigenvalue > 0 and three eigenvalues < 0 at each point. angle: $\cos\theta = \frac{w^Tg_{ij}v}{|v||w|}$, spacetime interval: $|v| = \sqrt{v^Tg_{ij}v}$

- ullet change g_{ij} and change physical properties of spacetime
- astrophysicist begins with what we observe and tries to construct a metric that models it
- enter any metric, then use Einstein's field equation to read off the physical properties of the resulting universe