Should the Frenet frame be named only for Frenet?

- a) yes
- b) no, it should include him, but not only Frenet
- c) no, strike his name and use a different one

http://l.bp.blogspot.com/-LgzYokAoe_I/VJW9enlNqkI/AAAAAAAUjY/YYrGH7TPBBY/s1600/baby-name-surprised.jpq

Curves → Surfaces

- The embeddings make a difference as we'll see when we examine curves on other kinds of surfaces (e.g., helix on cylinder versus cone) and in spacetime.
- Given a fixed piece of string, what figure bounds the largest area?

Curves → Surfaces

- The embeddings make a difference as we'll see when we examine curves on other kinds of surfaces (e.g., helix on cylinder versus cone) and in spacetime.
- Given a fixed piece of string, what figure bounds the largest area?

https://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Isoperimetric_

inequality_illustr1.svg/440px-Isoperimetric_inequality_illustr1.svg.png

Green's Theorem
$$\int_{\alpha} L dx + M dy = \int \int \frac{\partial M}{\partial x} - \frac{\partial L}{\partial y} dA$$

Think Green!

 $\alpha(s) = (x(s), y(s))$ closed curve with length L enclosing region $A \Rightarrow L^2 \geq 4\pi A$ once around?

 $\alpha(s) = (x(s), y(s))$ closed curve with length L enclosing region $A \Rightarrow L^2 \geq 4\pi A$ once around? 0 < s < L

- Bound by 2 parallels lines
- Circle is stepping stone to go from area to length
- r drops out at the end so specific projection doesn't matter

http://www.nerdytshirt.com/images/shirt-images/variety-shirts/8-think-green/

think-green-math-sand.jpg, http://i.stack.imgur.com/gctMU.png,

http://www.ma.utexas.edu/users/voloch/NTpic/skeptic.jpg

 $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$

http://www.nerdytshirt.com/images/shirt-images/variety-shirts/8-think-green/

think-green-math-sand.jpg, http://i.stack.imgur.com/gctMU.png,

http://www.ma.utexas.edu/users/voloch/NTpic/skeptic.jpg

Parametrize circle $\beta(s)$ using x(s), smooth $\alpha(s)$ with a new y: $\beta(s) = (x(s), \pm \sqrt{r^2 - x(s)^2}) = (x(s), \beta_2(s))$

 $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$

http://www.nerdytshirt.com/images/shirt-images/variety-shirts/8-think-green/

think-green-math-sand.jpg, http://i.stack.imgur.com/gctMU.png,

http://www.ma.utexas.edu/users/voloch/NTpic/skeptic.jpg

Parametrize circle $\beta(s)$ using x(s), smooth $\alpha(s)$ with a new y: $\beta(s) = (x(s), \pm \sqrt{r^2 - x(s)^2}) = (x(s), \beta_2(s))$ Area of $\alpha(s)$: $\int \int dA^{\text{Green}} \int x dy = \int_{s}^{L} xy' ds$

 $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$

http://www.nerdytshirt.com/images/shirt-images/variety-shirts/8-think-green/

think-green-math-sand.jpg, http://i.stack.imgur.com/gctMU.png,

http://www.ma.utexas.edu/users/voloch/NTpic/skeptic.jpg

Parametrize circle $\beta(s)$ using x(s), smooth $\alpha(s)$ with a new y: $\beta(s) = (x(s), \pm \sqrt{r^2 - x(s)^2}) = (x(s), \beta_2(s))$

Area of
$$\alpha(s)$$
: $\int \int dA^{\text{Green}} \int x dy = \int_{-\infty}^{L} xy' ds$

Area of
$$\beta(s)$$
: $\pi r^2 = \int \int dA^{\text{Green}} \int_{\text{circle}}^{0} -y_{\text{circle}} dx = \int_{0}^{L} -\beta_2 x' ds$

 $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$

http://www.nerdytshirt.com/images/shirt-images/variety-shirts/8-think-green/

think-green-math-sand.jpg, http://i.stack.imgur.com/gctMU.png,

http://www.ma.utexas.edu/users/voloch/NTpic/skeptic.jpg

Parametrize circle $\beta(s)$ using x(s), smooth $\alpha(s)$ with a new y:

$$\beta(s) = (x(s), \pm \sqrt{r^2 - x(s)^2}) = (x(s), \beta_2(s))$$

Area of
$$\alpha(s)$$
: $\iint dA^{Green} \int xdy = \int_{-\infty}^{\infty} xy'ds$

Area of
$$\beta(s)$$
: $\pi r^2 = \int \int dA^{\text{Green}} \int_{\text{circle}}^{0} -y_{\text{circle}} dx = \int_{0}^{L} -\beta_2 x' ds$

We'll add these & reduce to get a nice formula for total area: rL

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds$$

Area of curve + circle =
$$\int_0^L xy' - \beta_2 x' ds \le \int_0^L |xy' - \beta_2 x'| ds$$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$
$$= \int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=}$$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$

= $\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$
=
$$\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$$
change middle term $-2xy' \beta_2 x'$ via $(xx' + \beta_2 y')^2$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \leq \int_{0}^{L} |xy' - \beta_2 x'| ds$$
=
$$\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$$
change middle term $-2xy'\beta_2 x'$ via $(xx' + \beta_2 y')^2$ $(xx' + \beta_2 y')^2 \geq 0$ gives

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$

= $\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$
change middle term $-2xy'\beta_2 x'$ via $(xx' + \beta_2 y')^2$
 $(xx' + \beta_2 y')^2 \ge 0$ gives $x^2 x'^2 + \beta_2^2 y'^2 \ge -2xx'\beta_2 y' = -2xy'\beta_2 x'$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$

= $\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$
change middle term $-2xy' \beta_2 x'$ via $(xx' + \beta_2 y')^2$
 $(xx' + \beta_2 y')^2 \ge 0$ gives $x^2 x'^2 + \beta_2^2 y'^2 \ge -2xx' \beta_2 y' = -2xy' \beta_2 x'$
 $\le \int_{0}^{L} \sqrt{x^2 y'^2 + x^2 x'^2 + \beta_2^2 y'^2 + \beta_2^2 x'^2} ds$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$

= $\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$
change middle term $-2xy' \beta_2 x'$ via $(xx' + \beta_2 y')^2$
 $(xx' + \beta_2 y')^2 \ge 0$ gives $x^2 x'^2 + \beta_2^2 y'^2 \ge -2xx' \beta_2 y' = -2xy' \beta_2 x'$
 $\le \int_{0}^{L} \sqrt{x^2 y'^2 + x^2 x'^2 + \beta_2^2 y'^2 + \beta_2^2 x'^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{(x^2 + \beta_2^2)(x'^2 + y'^2)} ds$

 $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$

= $\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$
change middle term $-2xy' \beta_2 x'$ via $(xx' + \beta_2 y')^2$
 $(xx' + \beta_2 y')^2 \ge 0$ gives $x^2 x'^2 + \beta_2^2 y'^2 \ge -2xx' \beta_2 y' = -2xy' \beta_2 x'$
 $\le \int_{0}^{L} \sqrt{x^2 y'^2 + x^2 x'^2 + \beta_2^2 y'^2 + \beta_2^2 x'^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{(x^2 + \beta_2^2)(x'^2 + y'^2)} ds$

=

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$

= $\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$
change middle term $-2xy' \beta_2 x'$ via $(xx' + \beta_2 y')^2$
 $(xx' + \beta_2 y')^2 \ge 0$ gives $x^2 x'^2 + \beta_2^2 y'^2 \ge -2xx' \beta_2 y' = -2xy' \beta_2 x'$
 $\le \int_{0}^{L} \sqrt{x^2 y'^2 + x^2 x'^2 + \beta_2^2 y'^2 + \beta_2^2 x'^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{(x^2 + \beta_2^2)(x'^2 + y'^2)} ds$
= $\int_{0}^{L} \sqrt{(x^2 + \beta_2^2) \cdot 1} ds =$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$

= $\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$
change middle term $-2xy' \beta_2 x'$ via $(xx' + \beta_2 y')^2$
 $(xx' + \beta_2 y')^2 \ge 0$ gives $x^2 x'^2 + \beta_2^2 y'^2 \ge -2xx' \beta_2 y' = -2xy' \beta_2 x'$
 $\le \int_{0}^{L} \sqrt{x^2 y'^2 + x^2 x'^2 + \beta_2^2 y'^2 + \beta_2^2 x'^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{(x^2 + \beta_2^2)(x'^2 + y'^2)} ds$
= $\int_{0}^{L} \sqrt{(x^2 + \beta_2^2) \cdot 1} ds = \int_{0}^{L} |circle| ds =$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_{2}x'ds \le \int_{0}^{L} |xy' - \beta_{2}x'|ds$$

= $\int_{0}^{L} \sqrt{(xy' - \beta_{2}x')^{2}} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^{2}y'^{2} - 2xy'\beta_{2}x' + \beta_{2}^{2}x'^{2}} ds$
change middle term $-2xy'\beta_{2}x'$ via $(xx' + \beta_{2}y')^{2}$
 $(xx' + \beta_{2}y')^{2} \ge 0$ gives $x^{2}x'^{2} + \beta_{2}^{2}y'^{2} \ge -2xx'\beta_{2}y' = -2xy'\beta_{2}x'$
 $\le \int_{0}^{L} \sqrt{x^{2}y'^{2} + x^{2}x'^{2} + \beta_{2}^{2}y'^{2} + \beta_{2}^{2}x'^{2}} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{(x^{2} + \beta_{2}^{2})(x'^{2} + y'^{2})} ds$
= $\int_{0}^{L} \sqrt{(x^{2} + \beta_{2}^{2}) \cdot 1} ds = \int_{0}^{L} |circle| ds = \int_{0}^{L} rds =$

Area of curve + circle =
$$\int_{0}^{L} xy' - \beta_2 x' ds \le \int_{0}^{L} |xy' - \beta_2 x'| ds$$

= $\int_{0}^{L} \sqrt{(xy' - \beta_2 x')^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{x^2 y'^2 - 2xy' \beta_2 x' + \beta_2^2 x'^2} ds$
change middle term $-2xy' \beta_2 x'$ via $(xx' + \beta_2 y')^2$
 $(xx' + \beta_2 y')^2 \ge 0$ gives $x^2 x'^2 + \beta_2^2 y'^2 \ge -2xx' \beta_2 y' = -2xy' \beta_2 x'$
 $\le \int_{0}^{L} \sqrt{x^2 y'^2 + x^2 x'^2 + \beta_2^2 y'^2 + \beta_2^2 x'^2} ds \stackrel{\text{foil}}{=} \int_{0}^{L} \sqrt{(x^2 + \beta_2^2)(x'^2 + y'^2)} ds$
= $\int_{0}^{L} \sqrt{(x^2 + \beta_2^2) \cdot 1} ds = \int_{0}^{L} |circle| ds = \int_{0}^{L} r ds = rL$

- $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$
 - Book completes proof with arithmetic mean.

Define $\bar{h} = \frac{A}{2r}$.

- $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$
 - Book completes proof with arithmetic mean.

Define $\bar{h} = \frac{A}{2r}$. Think of rectangle: "average height" of the curve.

We showed: $rL \ge$ Area of curve + circle = $A + \pi r^2 =$

- $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$
 - Book completes proof with arithmetic mean.

Define $\bar{h} = \frac{A}{2r}$. Think of rectangle: "average height" of the curve.

We showed: $rL \ge$ Area of curve + circle = $A + \pi r^2 = 2r\bar{h} + \pi r^2$

 $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$

Book completes proof with arithmetic mean.

Define $\bar{h} = \frac{A}{2r}$. Think of rectangle: "average height" of the curve.

We showed: rL > Area of curve + circle = $A + \pi r^2 = 2r\bar{h} + \pi r^2$

 $L \geq 2h + \pi r$

- $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$
 - Book completes proof with arithmetic mean.

Define $\bar{h} = \frac{A}{2r}$. Think of rectangle: "average height" of the curve.

We showed: $rL \ge$ Area of curve + circle = $A + \pi r^2 = 2r\bar{h} + \pi r^2$

$$L \geq 2h + \pi r \geq 2h + \frac{\pi}{2} 2r$$

- $\alpha(s)=(x(s),y(s))$ closed curve $0\leq s\leq L$ enclosing region $A\Rightarrow L^2\geq 4\pi A$
 - Book completes proof with arithmetic mean.

Define $\bar{h} = \frac{A}{2r}$. Think of rectangle: "average height" of the curve.

We showed: $rL \ge$ Area of curve + circle = $A + \pi r^2 = 2r\bar{h} + \pi r^2$

 $L \geq 2\bar{h} + \pi r \geq 2\bar{h} + \frac{\pi}{2}2r$ upper bound on \bar{h} via width (2r) & length (L)

- $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$
 - Book completes proof with arithmetic mean.

Define $\bar{h} = \frac{A}{2r}$. Think of rectangle: "average height" of the curve.

We showed: $rL \ge$ Area of curve + circle = $A + \pi r^2 = 2r\bar{h} + \pi r^2$

 $L \ge 2\bar{h} + \pi r \ge 2\bar{h} + \frac{\pi}{2}r$ upper bound on \bar{h} via width (2r) & length (L)

$$L^{2} \geq (2\bar{h} + \frac{\pi}{2}2r)^{2} = 4\bar{h}^{2} + 2\bar{h}\pi^{2}r + \frac{\pi^{2}}{4}(2r)^{2}$$

- $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$
 - Book completes proof with arithmetic mean.

Define $\bar{h} = \frac{A}{2r}$. Think of rectangle: "average height" of the curve. We showed: $rL \geq$ Area of curve + circle = $A + \pi r^2 = 2r\bar{h} + \pi r^2$ $L \geq 2\bar{h} + \pi r \geq 2\bar{h} + \frac{\pi}{2}2r$ upper bound on \bar{h} via width (2r) & length (L) $L^2 \geq (2\bar{h} + \frac{\pi}{2}2r)^2 = 4\bar{h}^2 + 2\bar{h}\pi 2r + \frac{\pi^2}{4}(2r)^2$

$$=4\bar{h}^2+(-2\bar{h}\pi 2r+4\bar{h}\pi 2r)+\frac{\pi^2}{4}(2r)^2$$

- $\alpha(s)=(x(s),y(s))$ closed curve $0\leq s\leq L$ enclosing region $A\Rightarrow L^2\geq 4\pi A$
 - Book completes proof with arithmetic mean.

Define
$$\bar{h}=\frac{A}{2r}$$
. Think of rectangle: "average height" of the curve. We showed: $rL \geq$ Area of curve + circle = $A+\pi r^2=2r\bar{h}+\pi r^2$ $L \geq 2\bar{h}+\pi r \geq 2\bar{h}+\frac{\pi}{2}2r$ upper bound on \bar{h} via width (2r) & length (L) $L^2 \geq (2\bar{h}+\frac{\pi}{2}2r)^2=4\bar{h}^2+2\bar{h}\pi 2r+\frac{\pi^2}{4}(2r)^2$ = $4\bar{h}^2+(-2\bar{h}\pi 2r+4\bar{h}\pi 2r)+\frac{\pi^2}{4}(2r)^2$ foil $(2\bar{h}-\frac{\pi}{2}2r)^2+4\bar{h}\pi 2r$

- $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$
 - Book completes proof with arithmetic mean.

Define
$$\bar{h}=\frac{A}{2r}$$
. Think of rectangle: "average height" of the curve. We showed: $rL \geq$ Area of curve + circle = $A+\pi r^2=2r\bar{h}+\pi r^2$ $L \geq 2\bar{h}+\pi r \geq 2\bar{h}+\frac{\pi}{2}2r$ upper bound on \bar{h} via width (2r) & length (L) $L^2 \geq (2\bar{h}+\frac{\pi}{2}2r)^2=4\bar{h}^2+2\bar{h}\pi 2r+\frac{\pi^2}{4}(2r)^2$ = $4\bar{h}^2+(-2\bar{h}\pi 2r+4\bar{h}\pi 2r)+\frac{\pi^2}{4}(2r)^2$ $= 4\bar{h}^2+(-2\bar{h}\pi 2r+4\bar{h}\pi 2r)+\frac{\pi^2}{4}(2r)^2$ $= 4\pi A$ goodbye $r!$

- $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$
 - Book completes proof with arithmetic mean.

Define
$$\bar{h}=\frac{A}{2r}$$
. Think of rectangle: "average height" of the curve. We showed: $rL \geq$ Area of curve + circle = $A+\pi r^2=2r\bar{h}+\pi r^2$ $L \geq 2\bar{h}+\pi r \geq 2\bar{h}+\frac{\pi}{2}2r$ upper bound on \bar{h} via width (2 r) & length (L) $L^2 \geq (2\bar{h}+\frac{\pi}{2}2r)^2=4\bar{h}^2+2\bar{h}\pi 2r+\frac{\pi^2}{4}(2r)^2=4\bar{h}^2+(-2\bar{h}\pi 2r+4\bar{h}\pi 2r)+\frac{\pi^2}{4}(2r)^2\stackrel{\text{foil}}{=}(2\bar{h}-\frac{\pi}{2}2r)^2+4\bar{h}\pi 2r \geq 4\bar{h}\pi 2r=4\pi A$ goodbye $r!$ QED (quod erat demonstrandum)

- $\alpha(s)=(x(s),y(s))$ closed curve $0\leq s\leq L$ enclosing region $A\Rightarrow L^2\geq 4\pi A$
 - Book completes proof with arithmetic mean.

Define $\bar{h}=\frac{A}{2r}$. Think of rectangle: "average height" of the curve. We showed: $rL \geq$ Area of curve + circle = $A+\pi r^2=2r\bar{h}+\pi r^2$ $L \geq 2\bar{h}+\pi r \geq 2\bar{h}+\frac{\pi}{2}2r$ upper bound on \bar{h} via width (2r) & length (L) $L^2 \geq (2\bar{h}+\frac{\pi}{2}2r)^2=4\bar{h}^2+2\bar{h}\pi 2r+\frac{\pi^2}{4}(2r)^2=4\bar{h}^2+(-2\bar{h}\pi 2r+4\bar{h}\pi 2r)+\frac{\pi^2}{4}(2r)^2\stackrel{\text{foil}}{=}(2\bar{h}-\frac{\pi}{2}2r)^2+4\bar{h}\pi 2r \geq 4\bar{h}\pi 2r=4\pi A$ goodbye r! QED (quod erat demonstrandum)

 Gaussian isoperimetric inequality useful in Information Theory for decoding error probabilities for a Gaussian channel

- $\alpha(s) = (x(s), y(s))$ closed curve $0 \le s \le L$ enclosing region $A \Rightarrow L^2 \ge 4\pi A$
 - Book completes proof with arithmetic mean.

Define $\bar{h}=\frac{A}{2r}$. Think of rectangle: "average height" of the curve. We showed: $rL \geq$ Area of curve + circle = $A+\pi r^2=2r\bar{h}+\pi r^2$ $L \geq 2\bar{h}+\pi r \geq 2\bar{h}+\frac{\pi}{2}2r$ upper bound on \bar{h} via width (2r) & length (L) $L^2 \geq (2\bar{h}+\frac{\pi}{2}2r)^2=4\bar{h}^2+2\bar{h}\pi 2r+\frac{\pi^2}{4}(2r)^2$ = $4\bar{h}^2+(-2\bar{h}\pi 2r+4\bar{h}\pi 2r)+\frac{\pi^2}{4}(2r)^2$ $\stackrel{\text{foil}}{=}(2\bar{h}-\frac{\pi}{2}2r)^2+4\bar{h}\pi 2r \geq 4\bar{h}\pi 2r=4\pi A$ goodbye r! QED (quod erat demonstrandum)

- Gaussian isoperimetric inequality useful in Information Theory for decoding error probabilities for a Gaussian channel
- In 3-space, sphere maximizes volume while minimizing surface area—geodesic domes

Cauchy-Crofton formula

lpha(s) plane curve of length $\it L$. There are $\it 2L$ straight lines (counted with multiplicities) which meet $\it \alpha(s)$ electron micrographs

Four-Vertex Theorem

 $\kappa(s)$ of a simple, closed, smooth plane curve has at least four local extrema

mechanics: no polygons that can stand on only one edge (false in \mathbb{R}^3 : Gomboc)

