Mathematical Breakthroughs

- Mathematics research is like genealogical research-answers why
- Chose geometry because it is the most rewarding even though visualization does not come easily for me
- Count on my fingers

ALL YOU NEED IS

A Rough Beginning to my Career: Freshman Year

- Our mother instilled the beliefs: try things at least once, work hard Freshman Year:
- Failed first test in college but improved to B+
- Guardian of my brother
- Simpsons on Sundays

Diversity Issues

- Physics and computer science high school teacher
- "You don't look like a mathematician"

Representations of Spaces and Mathematics in Society

- Analogy: How do we know whether two fractions are the same? $\frac{14038227}{2351281419} \xrightarrow{?} \frac{3521}{589737}$

Representations of Spaces and Mathematics in Society

- Analogy: How do we know whether two fractions are the same? $\frac{14038227}{2351281419} \xrightarrow{?} \frac{3521}{589737}$
- Thesis had roots in crystallography and relates to higher dimensional models for our universe, the study of 3-manifolds, viruses, and even music theory

Representations of Spaces and Mathematics in Society

- Analogy: How do we know whether two fractions are the same? $\frac{14038227}{2351281419} \xrightarrow{?} \frac{3521}{589737}$
- Thesis had roots in crystallography and relates to higher dimensional models for our universe, the study of 3-manifolds, viruses, and even music theory
- Representations of Spaces, Mathematicians, and Mathematics in Society \& Teaching

$\left(\frac{\text { SurfaceArea }(\mathcal{O})}{4 \pi}\right) \frac{1}{t}+\left(\frac{1}{64 \sqrt{\pi}} \int_{\operatorname{MirrorLocus}(\mathcal{O})} \tau\right) \sqrt{t}+\frac{\chi(\mathcal{O})}{6}+\ldots$

Working with Others

Erdős-Bacon number: 7 or ∞

Working with Others

Erdős-Bacon number: 7 or ∞ Six degrees of Kevin Bacon:

Working with Others

Erdős-Bacon number: 7 or ∞

Six degrees of Kevin Bacon: 3 or ∞
Futurama: Bite My Shiny Metal X (documentary short) $\xrightarrow{\text { David } X \text { Cohen }}$ I Know that Voice (documentary) $\xrightarrow{\text { Ed Asner }} J F K$ (1991) $\stackrel{\text { Kevin Bacon }}{\longleftrightarrow}$

Working with Others

Erdős-Bacon number: 7 or ∞

Six degrees of Kevin Bacon: 3 or ∞
Futurama: Bite My Shiny Metal X (documentary short) $\xrightarrow{\text { David X Cohen }}$ I Know that Voice (documentary) $\xrightarrow{\text { Ed Asner }} J F K$ (1991) $\stackrel{\text { Kevin Bacon }}{\longleftrightarrow}$

Paul Erdős number: 4

Asymptotic expansion of the heat kernel for orbifolds $\xrightarrow{\text { Carolyn S. Gordon }}$ Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal Jaun Pablo Rossetti Hearing the platycosms John Conway On the distribution of values of angles determined by coplanar points Paul Erdős

Research on Representations of Mathematics in Society

Apu insists that he has an excellent memory: In fact I can recite π to 40,000 places. The last digit is one! [Marge in Chains]

How many digits of π do you know? What is the probability that Apu is correct if he randomly guessed?

Hideaki Tomoyori: World Record 1987-1995

For example, the number sequence three-nine in Japanese is pronounced san-kyu, and that sounds very like the word sa-kyu, which means "sand dune". If I picture a sand dune, I easily remember the numbers three and nine. And if I add in other elements, like my wife standing in front of the sand dune by the bright sea, then those words in Japanese can remind me of a whole string of ten numbers.

Hideaki Tomoyori: World Record 1987-1995

I feel that human abilities really have no limits. It's often said that we use just about five percent of our brain cells, so I think we have much greater potential - and I want to pursue that potential. So I want to go on with the challenge of memorizing π, for just the same reason that people climb high mountains. I think it's a wonderful thing to challenge the limits of what we can do... the more one memorizes of it, the closer one comes to the real value of the circle - closer to perfection.

Researchers compared his cognitive abilities with a control group and concluded that they were not superior; they attributed his achievement to extensive practice.

Apu is Correct

- The 40,000 th digit of π is one if he is counting digits following the decimal point
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117 0679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549 3038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726 0249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146 $9519415116094330572703657595919530921861173819326117931051185480744623799627495673518 \ldots$

$$
\begin{gathered}
\text { Researching } 1 \text { Billion Digits of } \pi \\
\frac{1}{\pi}=12 \sum_{k=0}^{\infty} \frac{(-1)^{k}(6 k)!(545140134 k+13591409)}{(3 k)!(k!)^{3}(640320)^{3 k+\frac{3}{2}}}
\end{gathered}
$$

David and Gregory Chudnovsky (1989). Their algorithm is used by computer algebra software.

- David: Maybe in the eyes of God π looks perfect... π is the best stress test for a supercomputer
- Gregory: π is a damned good fake of a random number... It cannot be that π is truly random? Actually, a truly random sequence of numbers has not yet been discovered.
- David: Exploring π is like exploring the universe.
- Gregory: It's more like exploring underwater. You are in the mud, and everything looks the same... Our computer is the flashlight

Marge in Chains: The Simpsons

The 40,000 th digit of π is 1

The 40,000 th digit of π is 1

Bailey, Borwein and Plouffe, 1996

$$
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right)
$$

The 40,000th digit of π is 1

Bailey, Borwein and Plouffe, 1996

$$
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right)
$$

The Simpsons: 22 Short Films About Springfield

Outside Interests

- Hiking
- Music
- Travel

Jeff Westbrook: Nothing trains you better and gives you more analytical skills than mathematics. That skill is useful in the craziest places you might imagine: writing a TV show, writing a cartoon, and lawyering perhaps.

Futurama and The Simpsons ${ }^{\mathrm{TM}}$ and © Twentieth Century Fox Film Corporation. This educational talk and related content is not specifically authorized by Twentieth Century Fox.

