Mathematical Breakthroughs

- Mathematics research is like genealogical research–answers why
- Chose geometry because it is the most rewarding even though visualization does not come easily for me
- Count on my fingers

ALL YOU NEED IS

A Rough Beginning to my Career: Freshman Year

 Our mother instilled the beliefs: try things at least once, work hard

イロト 不良 とくほ とくほう 二日

Freshman Year:

- Failed first test in college but improved to B+
- Guardian of my brother
- Simpsons on Sundays

Diversity Issues

- Physics and computer science high school teacher
- "You don't look like a mathematician"

The study and reactions gives the two start ways out in the providence of the start of the start

Representations of Spaces and Mathematics in Society

• Analogy: How do we know whether two fractions are the

(日) (日) (日) (日) (日) (日) (日)

same? $\frac{14038227}{2351281419} \xrightarrow{?} \frac{3521}{589737}$

Representations of Spaces and Mathematics in Society

- Analogy: How do we know whether two fractions are the same? $\frac{14038227}{2351281419} \xrightarrow{?} \frac{3521}{589737}$
- Thesis had roots in crystallography and relates to higher dimensional models for our universe, the study of 3-manifolds, viruses, and even music theory

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Representations of Spaces and Mathematics in Society

- Analogy: How do we know whether two fractions are the same? $\frac{14038227}{2351281419} \xrightarrow{?} \frac{3521}{589737}$
- Thesis had roots in crystallography and relates to higher dimensional models for our universe, the study of 3-manifolds, viruses, and even music theory
- Representations of Spaces, Mathematicians, and Mathematics in Society & Teaching

Erdős-Bacon number: 7 or ∞

Erdős-Bacon number: 7 or ∞ Six degrees of Kevin Bacon:

Erdős-Bacon number: 7 or ∞ Six degrees of Kevin Bacon: 3 or ∞ Futurama: Bite My Shiny Metal X (documentary short) $\xrightarrow{\text{David X Cohen}} I$ Know that Voice (documentary) $\xrightarrow{\text{Ed Asner}} JFK$ (1991) $\xleftarrow{\text{Kevin Bacon}}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Erdős-Bacon number: 7 or ∞ Six degrees of Kevin Bacon: 3 or ∞

Futurama: Bite My Shiny Metal X (documentary short) $\xrightarrow{\text{David X Cohen}} I$ *Know that Voice* (documentary) $\xrightarrow{\text{Ed Asner}} JFK$ (1991) $\xleftarrow{\text{Kevin Bacon}}$

Paul Erdős number: 4

Asymptotic expansion of the heat kernel for orbifolds $\xrightarrow{\text{Carolyn S. Gordon}}$ Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal $\xrightarrow{\text{Jaun Pablo Rossetti}}$ Hearing the platycosms $\xrightarrow{\text{John Conway}}$ On the distribution of values of angles determined by coplanar points $\xleftarrow{\text{Paul Erdős}}$

Research on Representations of Mathematics in Society

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Research on Representations of Mathematics in Society

Apu insists that he has an excellent memory: In fact I can recite π to 40,000 places. The last digit is one! [Marge in Chains]

How many digits of π do you know? What is the probability that Apu is correct if he randomly guessed?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hideaki Tomoyori: World Record 1987-1995

For example, the number sequence three-nine in Japanese is pronounced san-kyu, and that sounds very like the word sa-kyu, which means "sand dune". If I picture a sand dune, I easily remember the numbers three and nine. And if I add in other elements, like my wife standing in front of the sand dune by the bright sea, then those words in Japanese can remind me of a whole string of ten numbers.

Hideaki Tomoyori: World Record 1987-1995

I feel that human abilities really have no limits. It's often said that we use just about five percent of our brain cells, so I think we have much greater potential - and I want to pursue that potential. So I want to go on with the challenge of memorizing π , for just the same reason that people climb high mountains. I think it's a wonderful thing to challenge the limits of what we can do... the more one memorizes of it, the closer one comes to the real value of the circle - closer to perfection.

Research on Hideaki Tomoyori: World Record 1987-1995

Researchers compared his cognitive abilities with a control group and concluded that they were not superior; they attributed his achievement to extensive practice.

Apu is Correct

The 40,000th digit of π is one if he is counting digits following the decimal point

 $3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117\\0679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549\\3038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726\\0249141273724587006606315588174881520920962829254091715384387892590360011330550548820466521384146\\9519415116094330572703657595919530921861173819326117931051185480744623799627495673518...$

1507814685262133252473837651...

 $\frac{\text{Researching 1 Billion Digits of }\pi}{\frac{1}{\pi}} = 12\sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (545140134k + 13591409)}{(3k)! (k!)^3 (640320)^{3k+\frac{3}{2}}}$

David and Gregory Chudnovsky (1989). Their algorithm is used by computer algebra software.

- David: Maybe in the eyes of God π looks perfect... π is the best stress test for a supercomputer
- Gregory: π is a damned good fake of a random number... It cannot be that π is truly random? Actually, a truly random sequence of numbers has not yet been discovered.
- **David**: Exploring π is like exploring the universe.
- **Gregory**: It's more like exploring underwater. You are in the mud, and everything looks the same... Our computer is the flashlight

Marge in Chains: The Simpsons

Al Jean

The 40,000th digit of π is 1

The 40,000th digit of π is 1

Bailey, Borwein and Plouffe, 1996

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^{i}} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The 40,000th digit of π is 1

Bailey, Borwein and Plouffe, 1996

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^{i}} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6}\right)$$

The Simpsons: 22 Short Films About Springfield

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outside Interests

- Hiking
- Music
- Travel

Jeff Westbrook: Nothing trains you better and gives you more analytical skills than mathematics. That skill is useful in the craziest places you might imagine: writing a TV show, writing a cartoon, and lawyering perhaps.

Futurama and The SimpsonsTM and ^(C) Twentieth Century Fox Film Corporation. This educational talk and related content is not specifically authorized by Twentieth Century Fox.