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Abstract. Let G be a closed, non-transitive subgroup of O(n+1), where n ≥ 2, and
let Qn = Sn/G. We will show that for each n there is a lower bound for the diameter of
Qn. If G is finite then Qn is an orbifold of constant curvature one and an explicit lower
bound can be given. For Coxeter groups, the resulting lower bound is independent of
dimension. Otherwise, Qn is a spherical Alexandrov space and we will show existence
of a lower bound. In the process, we will compute some examples of quotient spaces
and their diameters.

1. Introduction

While representations of compact Lie groups are well understood, the geometry of
the corresponding spherical quotients is virtually unknown. Let G be a closed, non-
transitive subgroup of O(n + 1), where n ≥ 2, and let Qn = Sn/G. The goal of this
paper is to find lower bounds for the diameter of Qn.

Knowing how small the diameter can get not only gives information about Qn itself,
but can also lead to other interesting results. For example, for the equivariant sphere
theorem in [21], let G be a closed subgroup of the isometries of a closed manifold M
with positive sectional curvature. Given any point p on the manifold, the tangent space
to the orbit Gp at p is invariant under the isotropy group at p, which is a subgroup
of the orthogonal group, O(TpM). Hence, the normal space is also left invariant. Let
S[p] be the quotient of the unit sphere in this normal space by the isotropy group at
p. This is one of the above spaces Qn. If two points p and q can be found on M so
that the diameters of S[p] and S[q] are both less than π

4
, then M is the union of tubular

neighborhoods about the orbits of these points. Thus, local diameter information gives
global results about the structure of the manifold.

For lower bounds on the diameter, it is only necessary to examine irreducible actions
since the diameter of a reducible action is π when there is a point of Sn fixed by the
entire group, and π

2
otherwise (see [21] and [4]).

If the group is finite, then the resulting quotient space is a constant curvature one
orbifold. If Γ acts properly discontinuously and freely, then Sn/Γ is a manifold. All such
groups are classified in [34]. McGowan [25] used this classification to show that diameters
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of these manifolds are bounded below by 1
2
arccos(

tan( 3π
10

)√
3

), which is approximately π
9.63

(see also [18]). This lower bound is optimal and occurs in dimension n = 3.
The problem of classifying all finite subgroups ofO(n+1) is equivalent to classifying all

orthogonal representations of finite groups. Hence, methods of exhaustive computation,
as in the manifold case, are not feasible beyond a few small dimensions.

After providing the necessary background in Section 2, this paper discusses lower
bounds on the diameter of Sn/Γ when Γ is closed and non-transitive, applications, and
an exhaustive computation of the resulting spaces and their diameters for a wide class
of groups.

We first examine the diameters of spaces resulting from finite groups in Section 3.

Theorem 3.14 If Γ is finite, then there exists ε, depending only on n, so that
diam(Sn/Γ) ≥ ε(n).

The lower bound ε(n) is explicit in the proof of the theorem, although it does tend
to 0 as n gets large. A brief sketch of the proof follows. Using ideas in the proof of
Bieberbach’s first theorem [9], it can be shown that elements within a neighborhood of
the identity commute, since Γ is a finite group. Then, a finite index abelian subgroup
of Γ can be found so that the index can be universally controlled. The diameter of the
abelian subgroup, which we prove to be at least π

2
, and the index are used to bound the

diameter of Sn/Γ by a constant which depends only on n.

Corollary 3.14.1 If Γ is a finite subgroup of the isometry group of Mn, where Mn is
CP n or HP n, then there exists ε depending only on n, so that diam(Mn/Γ) ≥ ε(n).

The proof is an extension of Theorem 3.14 via a Hopf-fibration argument.

Theorem 3.15 If Γ is a Coxeter group, generated by reflections, then
diam(Sn/Γ) ≥ π

8.10
.

This is achieved as the diameter of a quotient of S3. The diameter of Coxeter orbifolds,
resulting from groups generated by reflections, increases monotonically in n, and as n
approaches infinity, the diameter approaches π

2
.

We next examine the diameters of spaces resulting from closed, infinite, nontransitive
groups in Section 4. If the group is infinite, then the resulting quotient space is an
Alexandrov space with curvature bounded below. The explicit orbifold lower bounds in
Theorem A do not apply since discreteness was needed in the proof. When the quotient
space is an interval, the action is called a cohomogeneity-one action. Since the orbits Γp
are isoparametric hypersurfaces in spheres, the length of the intervals are at least π

6
(see

[23]). There are only two examples, in dimensions 7 and 13, where the diameter is equal
to π

6
. However, unlike the manifold and Coxeter orbifold cases, there is an entire class

of cohomogeneity-one actions on Sn, including actions for arbitrarily large dimensions,
which result in a quotient space of diameter π

4
.

Theorem 4.3 If Γ is a non-transitive group, then there exists ε, depending only on n,
so that diam(Sn/Γ) ≥ ε(n).
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The lower bounds are not explicit since the proof is by contradiction. We show that a
non-transitive sequence of groups cannot converge to a transitive subgroup of SO(n+1).
The proof relies on a theorem of Montgomery and Zippin [28], which says that groups
converging to a Lie group must eventually be conjugate to subgroups. Corollary 3.14.1
is needed when the transitive group is not simple.

Finally, we summarize the diameter results in Table 2. For quotient space orbifolds,
we find lower bounds which decrease to 0 as n gets large, but it is an interesting question
whether optimal lower bounds actually do decrease with n, or whether the optimal lower
bound is always achieved in dimension 3, as in the manifold and Coxeter orbifold cases,
and whether it is always true, as in the manifold and Coxeter orbifold cases, that the
optimal lower bound for the diameter increases to π

2
as n goes to infinity.

I would like to thank my advisor, Wolfgang Ziller, for his guidance and patience. I am
grateful to Karsten Grove, whose idea of taking limits of groups was the beginning of
the proof of Theorem 4.3, and Kevin Whyte, for the idea of the proof of Theorem 3.14.

2. Background

2.1. Riemannian Orbifolds. We present some basic ideas and intuition about Rie-
mannian orbifolds along with references where rigorous definitions and proofs can be
found.

While a manifold locally looks like Euclidean space, Rn, [13], an orbifold locally looks
like the quotient of Rn by a discrete group action (see [29, page 662] or [30, section 2] ).

A Riemannian orbifold locally looks (isometrically) like the quotient of a Riemannian
manifold by a finite subgroup of its isometry group [4, pages 9–12]. See [4, pages 24–28]
and [20, chapter 3] for examples of Riemannian orbifolds.

Remark 2.1. In general, an orbifold is not even homeomorphic to a manifold. For ex-
ample, look at x→ −x as a Z2 action on R3. Now, R3/Z2 is homeomorphic to a cone on
RP 2, but is not homeomorphic to a manifold at the cone point. However, in dimension
2, any orbifold is homeomorphic to a manifold [30, page 422]. Yet, orbifolds with cone
points are not isomorphic or isometric to manifolds.

Remark 2.2. For the purpose of this paper, we drop the Riemannian label and assume
that all of our orbifolds are Riemannian.

One can measure distance locally on an orbifold via lifting up to the Riemannian
manifold to compute lengths. To measure distance globally, we add up local lengths.
While these local lifts are not unique, the length of a curve is well defined [4, pages 18–
22]. One can define orbifold curvature as the curvature of the Riemannian manifold in
the local lift. Other Riemannian geometric concepts can also be extended to orbifolds.
For example, Toponogov’s Theorem, Volume Comparison, Sphere Theorems, Finiteness
Theorems and The Closed Geodesic Problem are all discussed in [4].
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A good orbifold is the global quotient of a Riemannian manifold by a discrete subgroup
of its isometry group [4, page 11]. A bad orbifold is an orbifold which does not arise in
this manner.

Lemma 2.3. ([32]) There are no bad constant curvature orbifolds

Idea of Proof of Lemma 2.3 One can construct a developing map into the constant
curvature space form M = Sn,Rn, or Hn from the orbifold universal covering using the
fact that any of the local charts that are used to define constant curvature orbifolds are
restrictions of global actions. (See [29, chapter 13] for definitions of the developing map
and orbifold universal cover).

Remark 2.4. Let Γ ⊂ O(n+ 1) be finite. Then On = Sn/Γ is a constant curvature one
orbifold.

2.2. Spherical Alexandrov Spaces. If G is not a discrete group, but is instead a
closed infinite group, then Sn/G is a spherical Alexandrov space with curvature bounded
below. This is a length space with Riemannian notions such as distance and curvature
are obtained by comparison with Sn via Toponogov [8, 31].

2.3. Reducible Orthogonal Actions and the Diameter.

Lemma 2.5. ([5],[26]) Let On = Sn/G, where G ⊂ O(n+ 1) is closed. Then,
diam(O) > π/2 iff diam(O) = π iff there is a point of Sn fixed by the whole group.

Lemma 2.6. ([5],[26]) Let On = Sn/G, where G ⊂ O(n + 1) is closed. Then, G is a
reducible action iff diam(O) = π

2
or π

Reducible actions lead to a large diameter of at least π
2

by the above lemmas. In
addition, the resulting diameter corresponding to a group is no larger than the resulting
diameter corresponding to its subgroups [26].

3. Finite Groups

3.1. Intuition and Examples. As we saw in Section 2.3, it is only necessary to exam-
ine irreducible actions for a lower bound on the diameter, since the diameter is π when
there is a point of Sn fixed by the entire group and π

2
for all other reducible actions.

Orbifolds. If the group G is finite, then the resulting quotient space is a constant cur-
vature one orbifold. In order to obtain a small diameter, a first guess would be to look
at the resulting space corresponding to a large group action.

Example 3.1. Footballs in Dimension 2

Let r =

(
rθ 0
0 1

)
be a 3x3 real matrix, where rθ is a 2x2 rotation matrix with rotation

angle π · q
p
, a rational multiple of π with p and q are relatively prime. Then S2/ < r >=

S2/Z2p is a football of diameter π, with isotropy Z2p at the cone points. By taking
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smaller rotations, we obtain thinner footballs. The quotient of S2 by S1, an infinite
group, is a longitude of length π.

Example 3.2. Orbifold Lens Spaces in Dimension 3

Let Γ = Zp be generated by (z1, z2)→ (e2πi/pz1, e
2πiq/pz2), where p and q are integers

and z1 and z2 are complex numbers. Let L(3, p, q) = S3/Γ. This is a (manifold) lens
space when p and q are relatively prime. Otherwise, Γ does not act freely on S3, and
so L(3, p, q) is an orbifold lens space. Since the z1 complex plane is left invariant by Γ,
we know that diam(L(p, q)) is π/2 or π. The diameter is π/2 exactly when q is not an
integer multiple of p, since there is no point of S3 fixed by the entire group.

We now look at abelian groups, which provide useful intuition and are necessary in
the proof of Theorem 3.14.

Example 3.3. Sn/Maximal Torus in SO(n+ 1)

Let T(n+1) be the maximal torus in SO(n+1). For n even, diam(Sn/T(n + 1)) = π,
and for n odd, diam(Sn/T(n + 1)) = π

2
For n odd, the maximal torus T(n+1) consists of all n+1 by n+1 real matrices of the

form

rθ1 0 . . . 0
0 rθ2 . . . 0
...

...
. . .

...
0 0 0 rθn+1

2


 (see Example 3.1). Then, Sn/T (n+ 1) has diameter π

2
since

there is no point of Sn fixed by the entire group, but there are invariant subspaces. For
n = 3, S3/T (4) is an arc of length π

2
. For larger, odd n, the quotient space Sn/T (n+ 1)

consists of a spherical polyhedron with n+1
2

vertices, where each edge has length π
2
.

For n even, the maximal torus T(n+1) consists of all matrices of the form


rθ1 0 . . . 0
0 rθ2 . . . 0
...

...
. . .

...
0 0 0 rθn

2

0 0 0 1




. Then, Sn/T (n+ 1) has diameter π since the last coordinate,

xn+1, is fixed by the entire group. For n = 2, as in Example 3.1, S2/T (3) is an arc of
length π. For larger, even n, the quotient space Sn/T (n+ 1) consists of a suspension of
a polyhedron. Arcs of length π, which intersect at (0, 0, ..., 1) and (0, 0, ...,−1), are all
π
2

away from each other.

The following is an example of a group which is abelian, but not contained in a
maximal torus.

Example 3.4. The orbifold resulting from the group consisting of
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1 0 0

0 −1 0
0 0 −1


,


−1 0 0

0 1 0
0 0 −1


,


−1 0 0

0 −1 0
0 0 1


 and


1 0 0

0 1 0
0 0 1


.

Notice this group is Z2 × Z2. It is abelian and is not contained in a maximal torus
S1 of SO(3). The x-axis is invariant under this action, but not fixed, so the action is
reducible with resulting diameter π

2
. A fundamental domain for the action is the orange

peel wedge formed by half of the northern hemisphere, containing positive x and z.
On the boundary, (0, y, z) and (0,−y, z) are identified, and (x, y, 0) and (x,−y, 0) are
identified. The resulting orbifold is a 3-corner pillow with Z2 isotropy at all three points.

(0,0,1)

(0,1,0)(1,0,0)
Z 2Z 2

Z 2

Figure 1. S2/Z2 × Z2

The following is an example of an irreducible action, which we know will have resulting
diameter less than π

2
by Section 2.3.

Example 3.5. Three-Cornered Pillow Shaped Orbifold in Dimension 2

The icosahedral group I acts on S2 giving rise to S2/I, a three-cornered pillow

with isotropy labeled below and diameter arccos(
tan( 3π

10
)√

3
), which is approximately π

4.82

([15],[20]).

a v
Z 5

Z 2

Z 3
c

Figure 2. Icosahedral Fundamental Domain

Manifolds and the Diameter. If Γ acts properly discontinuously and freely, then Sn/Γ
is a manifold. McGowan [25] has shown that diameters of these manifolds are bounded

below by 1
2
arccos(

tan( 3π
10

)√
3

), which is approximately π
9.63

(see also [18]). This lower bound

is optimal and occurs in dimension n = 3, as follows.
First, note that a cyclic group Zu acts on S2 by fixing an axis of rotation, as in

Example 3.1 The icosahedral group I also acts on S2 as in Example 3.5. Pull back the
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group Zu × I in SO(3) × SO(3) into SU(2) × SU(2) to get Z2u × I∗. This acts on S3

by quaternionic left and right multiplication. S3/Z2u × I∗ is the desired manifold which
has the above diameter bound. (Compare with Section 4.1.)

The diameters of all other manifolds Sn/Γ are computed exhaustively and found to
be larger than this manifold. The diameters increase monotonically in n and approach
π
2

as n approaches infinity.

3.2. Irreducible Group Condition. In this section we prove that a finite, irreducible
group must satisfy a certain condition, which is independent of the dimension. In the
process, we will prove some lemmas necessary for the next section. Notice that Lem-
mas 3.6 and 3.8 are true for any closed group, while finiteness is necessary in Lemma 3.9
and Theorem 3.11.

Lemma 3.6. Let G ⊂ O(n + 1) be closed. If G is abelian then the action is reducible
and so diam(Sn/G) is π

2
or π.

Proof of Lemma 3.6: After complexifying, G acts as a commuting set of unitary
operators, and hence we can diagonalize all the matrices simultaneously over C via an
orthonormal basis of eigenvectors. Let vi be this orthonormal basis. Then, if g ∈ G,
we know that gvi = eiθvi. If eiθ is real, then vi generates a real invariant subspace.
Otherwise, we also have gv̄i = e−iθv̄i. Look at {vi, v̄i} = W ⊂ Cn+1 and W ∩ Rn+1.
Now
G(W ∩ Rn+1) ⊂ W ∩ Rn+1. Also, v1 + v̄1, i(v1 − v̄1) ∈ W , and so W is a non-empty
invariant subspace. Hence, G is reducible.✷

Definition 3.7. In order to examine a neighborhood of the identity in O(n + 1), look
at the sup norm on GL(n+ 1), ‖M‖ = sup{|Mx| | x ∈ Rn+1 and |x| = 1}, where |x|
is the Euclidean norm. Then define an epsilon ball about M in O(n + 1) as Bε(Id) =
{M ∈ O(n+ 1) | ‖Id−M‖ < ε}
Lemma 3.8. Consider U = B1/2(Id). This satisfies [9]

1)Let g ∈ O(n+ 1), h ∈ U, [g, [g, h]] = id⇒ [g, h] = id.
2)g, h ∈ U ⇒ the sequence g0 = g, g1 = [g, h], g2 = [g, [g, h]] = [g, g1], . . . , gn, . . .
converges to id ∈ O(n+ 1).

In [9], this lemma is only proven for U = B1/4(Id), but one can easily modify the proof
to work for U = B1/2−ε(Id), for any ε > 0. To show that this holds for U = B1/2(Id), it
is necessary to show that 2) holds. Assume for contradiction that 2) does not hold for
U = B1/2(Id). Choose g, h ∈ U which violate 2). Now, g, h must be in B1/2−ε(Id) for
some ε > 0, and so 2) does not hold for B1/2−ε(Id), a contradiction.

Lemma 3.9. Let Γ be a finite group in O(n + 1). If Γ ⊂ U = B1/2(Id), then Γ is
abelian.

Proof of Lemma 3.9: Let g, h ∈ Γ. We know that Γ is discrete since Γ is finite.
Since gi → id in Lemma 3.8, then gi = id for some i. Applying 1 from the lemma
repeatedly, we see that g1 = [g, h] = id. Thus, Γ is abelian. ✷
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Definition 3.10. Let p ∈ Sn be a point with a trivial isotropy group for a discrete
action of Γ on Sn (such points exist as in [22, page 28]). A Dirichlet fundamental
domain centered at p is the set {x ∈ Sn | d(x, p) ≤ d(x, gp),∀g ∈ Γ}. Since Γ is
discrete, it is finite, so label the elements as γ1, ..., γm. Let
Hγi = {x ∈ Sn | d(x, p) ≤ d(x, γi(p)}. Then, the Dirichlet fundamental domain is ∩Hγi
which is a fundamental domain for the action of Γ on Sn [22, pages 29–30].

Theorem 3.11. Given a Dirichlet fundamental domain, each co-dimension one face on
the boundary arises from the half-space between the center point and its image under a
group element. If the action is irreducible and finite, then one of these domain generating
group elements moves some point y in Sn at least arccos(7

8
), which is approximately π

6.2
,

away from y.

Proof of Theorem 3.11: Let Γ be finite, and let the action of Γ be irreducible.
Then, looking at the sup norm on O(n + 1), we will show that ‖Id − gi‖ ≥ 1

2
for some

i, where gi generates the Dirichlet fundamental domain.
Assume not for contradiction. Then all the gi are in B1/2(Id), the ball of radius

1/2 about the identity. Applying Lemma 3.9, we see that all the gi commute. Since
these generate the group, then the entire group is abelian. By Lemma 3.6, the action is
reducible, a contradiction. Thus, by definition of the sup norm, the Euclidean distance
between y and gi(y) must be greater than or equal to 1/2 for some i and for some
y ∈ Sn. For any such i and y, form the triangle consisting of the vectors y and gi(y)
through the point (0, ..., 0) and angle θ between them, and with c as the side opposite
the angle θ. Using trigonometry, we see that 1/4 ≤ c2 = 2 − 2 cos θ or 2 cos θ ≤ 7/4.
Hence, θ ≤ arccos 7/8. Converting back to spherical distance, which is the Euclidean
angle between vectors, we see that d(y, i(y)) ≥ arccos 7/8, as desired.✷

Remark 3.12. This condition on the group is independent of the dimension.

3.3. Explicit Lower Bound Given a Fixed Dimension. In this section, we will
prove that given a fixed dimension, there exists a lower bound on the diameter resulting
from finite groups. This lower bound is explicit and depends only on the dimension.
While finiteness is used in the proof of Theorem 3.14, notice that Lemma 3.13 holds for
any closed, non-transitive group G ⊂ O(n+ 1).

Lemma 3.13. Let G ⊂ O(n + 1) be closed and non-transitive. If G′ has index k in G

then diam(Sn/G) ≥ diam(Sn/G′)
2(k−1)

(compare with [18, page 103]).

Proof of Lemma 3.13 Let d be the diameter of Sn/G and let p ∈ Sn/G. Now
Bd(p), the ball of radius d about p, must cover Sn/G. Since the index of G′ in G is k,
notice that Sn/G is a k-fold cover of Sn/G′ and so p must lift to p′1, ..., p

′
k via the coset

map. Hence Bd(p) must lift to Bd(p
′
1), Bd(p

′
2), ..., Bd(p

′
k), where p′i ∈ Sn/G′. These balls

cover Sn/G′. Let p′ be in the intersection of any two balls in Sn/G′ and let q′ ∈ Sn/G′.
To show that d(p′, q′) ≤ 2(k − 1)d, create a path from p′ to q′ by traveling through the
p′is, the centers of the balls.
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p’ q’

p1’ p2’

Figure 3. Index 2

The length of this path is at most 2(k− 1)d, since if you hit any ball more than once,
you will obtain a loop, which can be discarded. Notice that p was arbitrary, so that
given any p′ ∈ Sn/G′, we can find some point in Sn/G and repeat the process of lifting
so that p′ arises in the intersection of two balls as above. Hence d(p′, q′) ≤ 2(k− 1)d for
any points p′, q′ ∈ Sn/G′, and so diam(Sn/G′) ≤ 2(k− 1)d, as desired.✷

Corollary 3.13.1. If G′ ∈ SO(n + 1) with diam(Sn/G′) = d′, and G ∈ O(n + 1) is a
2-fold extension of G′ then diam(Sn/G) ≥ d′

2
.

Theorem 3.14. Let Γ ⊂ O(n+ 1) be finite. There exists ε depending only on n so that
diam(Sn/Γ) ≥ ε(n).

Proof of Theorem 3.14: Let Γ ⊂ O(n + 1) be finite. Let Γ′ be the subgroup
generated by Γ ∩ U ⊂ B1/2(Id), which is abelian by Lemma 3.6.

We will universally bound the index of Γ′ in Γ with a constant depending only on the
dimension n. Write Γ = δ1Γ

′ ∪ δ2Γ′ ∪ ... ∪ δkΓ′ where δiΓ
′ are distinct cosets, as Γ is

finite. We will find a bound on k. Note that if ‖δi − δj‖ < 1
2
, then

‖δ−1
j δi−Id‖ = ‖δ−1

j (δi−δj)‖ = ‖δi−δj‖ < 1
2
, since δ−1

j ∈ O(n+1). Hence, δ−1
j δi ∈ U∩Γ′.

Therefore, δi = δj(δ
−1
j δi) ∈ δjΓ′, and so δi and δj are in the same coset. Since we have

written Γ as a union of distinct cosets, then the δis are all at least 1
2

away from each

other in O(n+ 1). Place disjoint 1
2

balls in SO(n+ 1) about each δi. Now k, the index

of Γ′ in Γ must be less than or equal to the maximum number of disjoint 1
2

balls we
can put in SO(n+ 1). Using volume estimates, it follows that k is bounded above by a
constant depending only on the dimension n, call it k.

Finally, we will find a lower bound for the diameter of Sn/Γ. Since Γ′ is abelian,
we know that the diameter of Sn/Γ′ is π

2
or π, by Lemma 3.6. Let d be the diameter

of Sn/Γ. From Lemma 3.13 we know that d ≥ π
4(k−1)

, where k depends only on n, as

desired. ✷

Corollary 3.14.1. If Γ is a finite subgroup of the isometry group of Mn, where Mn is
CP n or HP n, then there exists ε depending only on n, so that diam(Mn/Γ) ≥ ε(n).

Proof of Corollary 3.14.1: Fix n. The proof is an extension of Theorem 3.14 via
a Hopf-fibration argument.

For CP n, let Γci ⊂ Isom(CP n) = SU(n + 1)/Zn+1 ∪ cSU(n + 1)/Zn+1, where c is
complex conjugation, be finite. Recall that CP n is isometric to S2n+1/U(1) via the
submersion metric. One obtains the Hopf-fibration from the diagonal embedding of
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U(1) into SU(n + 1). Now, look at the inverse image of Γci in O(2n + 2) via lifting to
SU(n + 1) ∪ cSU(n + 1), and call it Γi. Find a finite abelian subgroup of Γi as in in
Theorem 3.14, and call it Γ′i. We know that the index, k, of Γ′i in Γi depends only on n.
Diagonalize the Γi matrices over C. We will now apply U(1) from the Hopf fibration.
Notice that Γ′i · U(1) will also have index k in Γi · U(1). Since Γi and U(1) are all
diagonal, they preserve an axis. Hence, they are reducible. Then, diam(S2n+1/Γ

′
i · U(1))

is at least π
2
. We use the index k, depending only on n, to obtain a lower bound on the

diameter of S2n+1/Γi · U(1) = (S2n+1/U(1))/Γi = CP n/(Γi/Zn+1), as desired.
For HP n, let Γhi ⊂ Isom(HP n) = Sp(n+1)/Z2, be finite. The Hopf fibration S4n+3 →

HP n embeds Sp(1) into Sp(n + 1) ⊂ SO(4n + 4). The argument follows by pulling Γhi
back into SO(4n + 4) and continuing as above. Once diagonalizing Γ

′
i, we see that Γ

′
i

and Sp(1) preserve an axis since Γ
′
i acts on the left and Sp(1) acts on the right. Hence,

the action is reducible and the argument follows as above. ✷

3.4. Coxeter Groups. In this section, we will prove that if Γ is a Coxeter group, a
group generated by reflections, (see [24] and [22] for background information) then
diam(Sn/Γ) ≥ π

8.10
.

The Weyl group of a Lie group is a Coxeter group, so Coxeter groups are of natural
interest. To examine the meaning of the diameter lower bound for Lie groups, let G
be a compact Lie group of dimension n + 1. Look at a compact torus T in G. On the
Lie algebra level, t ⊂ g, as a maximal abelian subalgebra. Let N(T ) be the normalizer
of T . Now, the Weyl group, W = N(T )/T acts on t via conjugation. Let Ad(G) be
the adjoint action of G on g. There exists a bi-invariant metric on the Lie algebra so
that Ad(G) acts by isometries. Examine Sn(1) ⊂ g, where Sn(1) has radius one. Now,
Sn(1)/Ad(G) = (Sn(1)∩ t)/W . Hence, a lower bound on the diameter of (Sn(1)∩ t)/W
gives a lower bound on the diameter of Sn(1)/Ad(G).

Notation and Background. Let r be a non-trivial vector in Rn+1 and define Hr as the
subspace orthogonal to r. A reflection Rr in Rn+1 sends r to −r, fixes Hr and sends any
vector v to

v − < v, r >
< r, r >

r.

Notice that Rr ∈ O(n+1). A Coxeter group Γ is a finite group generated by reflections.
A root system R for Γ is a finite set of nonzero vectors in Rn+1 so that each vector r,

called a root, satisfies:

1)∀c ∈ R,R ∩ cr = {r,−r}

2)Rr(R) = R.

A simple system ∆, with simple roots ri, is a real basis for the root system so that each
root vector in R is a linear combination of simple roots where the coefficients all have the
same sign. Every Coxeter group has a simple system [24], so let ∆Γ = {r1, r2, ..., rm},
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where ri is a simple root of the Coxeter group Γ. Γ is generated by the reflections Rri
[22]. Let

D = {v ∈ Rn+1 so that < v, ri > ≥ 0 for all simple ri}.

D is a fundamental domain for Γ and there are no further identifications on the boundary
of D [24, pages 22–23]. A dual basis qi for ri, where < qi, rj >= δij, forms the vertices
of the fundamental domain [22]. Hence, D ∩ Sn is a fundamental domain for the action
of Γ on Sn.

All irreducible Coxeter groups, groups for which ∆Γ is not the union of two nonempty
orthogonal subsets, are classified in [22] via the Coxeter diagram and its corresponding
simple roots ([22, page 71]). These are H2

n, G2, I3, I4, F4, E6, E7, E8, An, Bn, and Dn. We
use the simple roots ri to compute a dual basis qi as follows. Let A be the matrix with
< ri, rj > as the ijth entry, and let A−1

(ij) be the ijth entry of A−1. Then

qi =
3∑
j=1

A−1
(ij)rj

is a dual basis vector for Γ [22, page 52]. Since the dual basis vectors qi are the vertices of
the fundamental domain, and the fundamental domain has no additional identifications
on it, the diameter of Sn/Γ is achieved as the largest spherical distance between dual
basis vectors. Since spherical distance is the angle, we look for the two basis vectors
with maximum angle between them. After a description of each group and the dual
basis vectors, we give the two vectors which achieve the diameter, and also give the
value for the diameter. Notice that we eliminate the dihedral group H2

n and G2 from
the list because, as Coxeter groups, they act on R2.

Define α = 2 cos π
5

and β = cos 2π
5

.

I3. I3 has order 120 = 233 · 5. It acts on S2 as I−, the Coxeter extension of I, the
icosahedral group. The simple root vectors are

r1 = [βα+ β, β,−βα], r2 = [−βα− β, β, βα],
r3 = [βα,−βα− β, β].

The dual basis vectors are

q1 = [−
√

5−1
−3+

√
5
,−

√
5−1

−3+
√

5
,−

√
5−1

−3+
√

5
], q2 = [1,−

√
5−1

−3+
√

5
,− 2
−3+

√
5
],

q3 = [1, 0,−
√

5−1
−3+

√
5
].

The diameter of S
2

I3
is achieved by q1 and q3 and is arccos 1

3

√
3√

5−2
√

5
= arccos

tan( 3π
10

)√
3
≈

π
4.82
.
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I4. I4 has order 1202 = 263252. It acts on S3 as (I∗ × I∗)−, the Coxeter extension of
I∗ × I∗ (see [14, page 57]), where I∗ is as in Example 3.1. The simple root vectors are

r1 = [βα+ β, β,−βα, 0], r2 = [−βα− β, β, βα, 0],
r3 = [βα,−βα− β, β, 0], r4 = [−βα, 0,−βα− β, β].

The dual basis vectors are

q1 = [−
√

5−1
−3+

√
5
,−

√
5−1

−3+
√

5
,−

√
5−1

−3+
√

5
,− 2
−7+3

√
5
], q2 = [1,−

√
5−1

−3+
√

5
,− 2
−3+

√
5
,− 2

√
5−2

−7+3
√

5
],

q3 = [1, 0,−
√

5−1
−3+

√
5
,− 3

√
5−5

−7+3
√

5
], q4 = [0, 0, 0, −4

√
5−2

−7+3
√

5
].

The diameter of S
3

I4
is achieved by q1 and q4 and is π − arccos

√
2 −9+4

√
5

(−7+3
√

5)2
≈ π

8.10
.

F4. F4 has order 2732. It acts on S3 as follows. This is the group of symmetries of a
regular solid in R4 having 24 (three-dimensional) faces which are octahedra [11]. The
simple root vectors are

r1 = [−1
2
, −1

2
, −1

2
, −1

2
], r2 = [1, 0, 0, 0],

r3 = [−1, 1, 0, 0], r4 = [0,−1, 1, 0].

The dual basis vectors are

q1 = [0, 0, 0,−2], q2 = [1, 1, 1,−3],
q3 = [0, 1, 1,−2], q4 = [0, 0, 1,−1].

The diameter of S
3

F4
is achieved by q1 and q4 and is π

4
.

E6. E6 has order 27345 and acts on S5. It is the group of automorphisms of a configu-
ration of 27 lines on a cubic surface. The simple root vectors are

r1 = [1
2
, 1

2
, 1

2
, −1

2
, −1

2
, −1

2
, −1

2
, −1

2
], r2 = [−1, 1, 0, 0, 0, 0, 0, 0],

r3 = [0,−1, 1, 0, 0, 0, 0, 0], r4 = [0, 0,−1, 1, 0, 0, 0, 0],
r5 = [0, 0, 0,−1, 1, 0, 0, 0], r6 = [0, 0, 0, 0,−1, 1, 0, 0].

The dual basis vectors are

q1 = [0, 0, 0, 0, 0, 0,−1,−1], q2 = [−5
6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
, −1

2
, −1

2
],

q3 = [−2
3
, −2

3
, 1

3
, 1

3
, 1

3
, 1

3
,−1,−1], q4 = [−1

2
, −1

2
, −1

2
, 1

2
, 1

2
, 1

2
, −3

2
, −3

2
],

q5 = [−1
3
, −1

3
, −1

3
, −1

3
, 2

3
, 2

3
,−1,−1], q6 = [−1

6
, −1

6
, −1

6
, −1

6
, −1

6
, 5

6
, −1

2
, −1

2
].

The diameter of S
5

E6
is achieved by q2 and q6 and is π

3
.

E7. E7 has order 210345 · 7 and acts on S6. The simple root vectors are

r1 = [1
2
, 1

2
, 1

2
, −1

2
, −1

2
, −1

2
, −1

2
, −1

2
], r2 = [−1, 1, 0, 0, 0, 0, 0, 0],

r3 = [0,−1, 1, 0, 0, 0, 0, 0], r4 = [0, 0,−1, 1, 0, 0, 0, 0],
r5 = [0, 0, 0,−1, 1, 0, 0, 0], r6 = [0, 0, 0, 0,−1, 1, 0, 0],
r7 = [0, 0, 0, 0, 0,−1, 1, 0].
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The dual basis vectors are

q1 = [−1
4
, −1

4
, −1

4
, −1

4
, −1

4
, −1

4
, −1

4
, −7

4
], q2 = [−1, 0, 0, 0, 0, 0, 0,−1],

q3 = [−1,−1, 0, 0, 0, 0, 0,−2], q4 = [−1,−1, 0, 0, 0, 0, 0,−3],
q5 = [−3

4
, −3

4
, −3

4
, −3

4
, 1

4
, 1

4
, 1

4
, −9

4
], q6 = [−1

2
, −1

2
, −1

2
, −1

2
, −1

2
, 1

2
, 1

2
, −3

2
],

q7 = [−1
4
, −1

4
, −1

4
, −1

4
, −1

4
, −1

4
, 3

4
, −3

4
].

The diameter of S
6

E7
is achieved by q2 and q7 and is arccos

√
3

3
≈ π

3.29
.

E8. E8 has dimension 21435527 and acts on S7. The simple root vectors are

r1 = [1
2
, 1

2
, 1

2
, −1

2
, −1

2
, −1

2
, −1

2
, −1

2
], r2 = [−1, 1, 0, 0, 0, 0, 0, 0],

r3 = [0,−1, 1, 0, 0, 0, 0, 0], r4 = [0, 0,−1, 1, 0, 0, 0, 0],
r5 = [0, 0, 0,−1, 1, 0, 0, 0], r6 = [0, 0, 0, 0,−1, 1, 0, 0],
r7 = [0, 0, 0, 0, 0,−1, 1, 0], r8 = [0, 0, 0, 0, 0, 0,−1, 1].

The dual basis vectors are

q1 = [−1,−1,−1,−1,−1,−1,−1,−1], q2 = [−3
2
, −1

2
, −1

2
, −1

2
, −1

2
, −1

2
, −1

2
, −1

2
],

q3 = [−2,−2,−1,−1,−1,−1,−1,−1], q4 = [−5
2
, −5

2
, −5

2
, −3

2
, −3

2
, −3

2
, −3

2
, −3

2
],

q5 = [−2,−2,−2,−2,−1,−1,−1,−1], q6 = [−3
2
, −3

2
, −3

2
, −3

2
, −3

2
, −1

2
, −1

2
, −1

2
],

q7 = [−1,−1,−1,−1,−1,−1, 0, 0], q8 = [−1
2
, −1

2
, −1

2
, −1

2
, −1

2
, −1

2
, −1

2
, 1

2
].

The diameter of S
7

E8
is achieved by q2 and q8 and is π

4
.

An. An has order (n+ 1)! and acts on Sn−1 as follows. Consider the symmetric group
Sn+1 acting as permutations on the coordinates of Rn+1. Notice that Sn+1 fixes the line
corresponding to e1 + e2 + ...+ en+1, where ei is the standard basis vector in Rn+1. The
orthogonal plane consisting of vectors whose coordinates add up to 0 is left invariant
under Sn+1. Let An be the action of Sn+1 restricted to this orthogonal plane. An fixes
the origin in this new R

n, and so it acts on Sn−1. Notice that An is not the group of
even permutations. The simple root vectors are

r1 = [−1, 1, 0, . . . , 0, 0, 0],
r2 = [0,−1, 1, 0, . . . , 0, 0],
r3 = [0, 0,−1, 1, 0, . . . , 0],

...
rn = [0, 0, 0, 0, . . . ,−1, 1].

The dual basis vectors are

q1 = [ −n
n+1
, 1
n+1
, 1
n+1
, . . . , 1

n+1
],

q2 = [−(n−1)
n+1

, −(n−1)
n+1

, 2
n+1
, . . . , 2

n+1
],

q3 = [−(n−2)
n+1

, (n−2)
n+1

, (n−2)
n+1

, 3
n+1
, . . . , 3

n+1
],

...
qn−1 = [ −2

n+1
, −2
n+1
, . . . , −2

n+1
, n−1
n+1
, n−1
n+1

],
qn = [ −1

n+1
, −1
n+1
, . . . , −1

n+1
, n
n+1

].
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The diameter of S
n−1

An
is achieved by q1 and qn and is arccos 1

n
, which goes to π

2
as n→∞.

The diameter of S
2

A3
is arccos 1

3
≈ π

2.56
. A3 is the group T−, the full isometry group of a

regular tetrahedron including reflection symmetries, as in [20, pages 18–20].

Bn. Bn has order 2nn! and acts on Sn−1 as follows. Let Sn be as in the description
of An above. The sign change reflections sending ei to its negative and fixing all other
ej generate a group of order 2n isomorphic to Zn2 . Conjugating a sign change by a
transposition will yield another sign change. Bn is the semi-direct product of Sn and
Z
n
2 . The simple root vectors are

r1 = [1, 0, 0, . . . , 0, 0, 0],
r2 = [−1, 1, 0, . . . , 0, 0, 0],
r3 = [0,−1, 1, 0, . . . , 0, 0],
r4 = [0, 0,−1, 1, 0, . . . , 0],

...
rn = [0, 0, 0, 0, . . . ,−1, 1].

The dual basis vectors are

q1 = [1, 1, 1, . . . , 1, 1, 1],
q2 = [0, 1, 1, . . . , 1, 1, 1],
q3 = [0, 0, 1, . . . , 1, 1, 1],

...
qn = [0, 0, 0, . . . , 0, 0, 1].

The diameter of Sn−1

Bn
is achieved by q1 and qn and is arccos

√
n
n

. As n → ∞, the

diameter approaches π
2
. The diameter of S2

B3
, is arccos

√
3

3
≈ π

3.29
. B3 is the group O−,

the orthogonal extension of the octahedral group [20, pages 20–21].

Dn. Dn has order 2n−1n! and acts on Sn−1. Dn is a subgroup of index 2 in Bn. Look
at the subgroup of Zn2 consisting only of sign changes which involve an even number of
signs, which is generated by ei+ej → −(ei+ej) for i �= j. Dn is the semi-direct product
of this subgroup with Sn. The simple root vectors are

r1 = [1, 1, 0, . . . , 0, 0, 0],
r2 = [−1, 1, 0, . . . , 0, 0, 0],
r3 = [0,−1, 1, 0, . . . , 0, 0],

...
rn = [0, 0, 0, 0, . . . ,−1, 1].
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The dual basis vectors are

q1 = [1
2
, 1

2
, 1

2
, . . . , 1

2
, 1

2
, 1

2
],

q2 = [−1
2
, 1

2
, 1

2
, . . . , 1

2
, 1

2
, 1

2
],

q3 = [0, 0, 1, 1, . . . , 1, 1],
q4 = [0, 0, 0, 1, . . . , 1, 1],

...
qn = [0, 0, 0, 0, . . . , 0, 1].

For n ≥ 4, the diameter of S
n−1

Dn
is achieved by q1 and qn and is arccos

√
n
n

. As n → ∞,

the diameter approaches π
2
. For n = 3, the diameter of S

2

D3
is achieved by q1 and q2 and

is arccos 1
3
≈ π

2.56
. Notice that D3(= A3) is the group T− as described above.

Summary of Coxeter Orbifold Diameter Results

Coxeter Other Group Descriptions Resulting
Group (compare with [14, pages 57–61], Diameter

[16, 12], and [22, page 81]) Lower Bound
I3 Icosahedral I− π/4.82

I4 (I∗ × I∗)− π/8.10
F4 Index-2 extension of O∗×C2O

∗ π/4
E6 Automorphisms of 27 lines on a cubic P2

6 π/3
E7 Automorphisms of 56 lines on P2

7 π/3.29
E8 Automorphisms of 240 lines on P2

8 π/4
An arccos 1/n
Bn arccos

√
n/n

Dn, n > 3 arccos
√
n/n

A3 = D3 Tetrahedral T− π/2.56
B3 Octahedral O− π/3.29
A4 Index-2 extension of I∗×ǏI∗1 π/2.38

B4 (O∗×D3O
∗)− π/3

D4 Index-2 extension of T ∗×C3T
∗ π/3

Table 1. Summary of Coxeter Orbifold Diameter Results

Lower Bound for Coxeter Groups.

Theorem 3.15. If Γ is a Coxeter group, generated by reflections, then
diam(Sn/Γ) ≥ π

8.10
.
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Proof of Theorem 3.15: If Γ is a reducible Coxeter group, then ∆Γ is the union
of two non-empty orthogonal subsets A and B by definition. Look at the subspaces HA
and HB generated by A and B, respectively. We claim these subspaces are invariant
under Γ. Notice that for any b ∈ B,Rb fixes HA by definition of Rb, since HA ⊂ Hb.
Now H⊥A = HB and Γ acts by isometries. Hence, Hb leaves HB invariant also. Similarly,
Ha leaves both HA and HB invariant. Since, Γ is reducible in the sense of invariant
subspaces, we know that the diameter of Sn/Γ ≥ π

2
.

For every irreducible Coxeter group, we have found a dual basis and then exhaustively
computed the diameter of Sn/Γ. Notice that the lowest diameter occurs in dimension
three. This is achieved as the diameter of the quotient of S3 by I4, the Coxeter group
extension of I∗ × I∗. Given a fixed dimension n which is large, An+1, Bn+1 and Dn+1

are the only Coxeter groups which act on Sn. Since An+1 has a resulting diameter

of arccos 1
n+1

, while Bn+1 and Dn+1 each have resulting diameter arccos
√
n+1
n+1

, we see
that the smallest diameter is achieved by both Bn+1 and Dn+1. This smallest diame-

ter, arccos
√
n+1
n+1

, increases monotonically in n. As n approaches infinity, the diameter
approaches π

2
. ✷

4. Infinite Groups

4.1. Intuition and Examples.

Cohomogeneity-One Actions and their Resulting Diameter. When the quotient space is
an interval, the action is called a cohomogeneity-one action. In Example 3.1, we saw
that the quotient of S2 by S1, the maximal torus of SO(3), is a longitude of length
π. In general, since the orbits Gp are isoparametric hypersurfaces in spheres, it is well
known that the length of the intervals are π

p
where p = 2, 3, 4 or 6 ([23]). Hence, the

diameter is at least π
6
. There are only two examples, in dimensions 7 and 13, where the

diameter is equal to π
6
. However, unlike the manifold and Coxeter orbifold cases, there

is an entire class of cohomogeneity-one actions on Sn, including actions for arbitrarily
large dimensions, which result in a quotient space of diameter π

4
.

Arbitrary Actions. If the group is infinite, then the resulting quotient space is an Alexan-
drov space with curvature bounded below. The explicit orbifold lower bounds in Theo-
rem 1 do not apply since discreteness was needed in the proof.

Example 4.1. CP n

Look at the Hopf action on S2n+1. Then S2n+1/S1 = CP n has diameter π
2
.

Example 4.2. S3/S1 × I∗

As in Section 3.1, S1 × I∗ acts on S3 by quaternionic left and right multiplication.
Now,

diam(S3/S1 × I∗) = diam(CP1/I) = diam(S2(1/2)/I),
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where S2(1/2) is the 2-sphere of radius 1/2. Since

diam(S2/I) = arccos(
tan( 3π

10
)√

3
), which is approximately π

4.82
, we see that

diam(S2(1/2)/I) = .5 arccos(
tan( 3π

10
)√

3
), which is approximately π

9.63
.

4.2. Infinite Group Conditions. Let G be infinite. If G is transitive, then Sn/G is
a point, which has diameter 0. Hence, we restrict to non-transitive actions.

The diameter resulting from a group is smaller than or equal to the diameter resulting
from its subgroups, so for any subgroup, we restrict to its closure. This restriction is
important, since if G is not closed, then the quotient is not even Hausdorff. For example,
look at the group G ⊂ SO(3) acting on S2 generated as follows. Let rθ be a 2x2 real
rotation matrix with rotation angle an irrational multiple of π. Let G be generated by(
rθ 0
0 1

)
and

(
1 0
0 rθ

)
. This action is not transitive on S2 but any point gets arbitrarily

close to any other point.
In general, given generators, it can be quite difficult to decide if the resulting group is

finite or infinite. For example, for the two generators above, let θ be a rational multiple
of π. Notice that G is not cyclic or dihedral. The largest order of any irreducible, finite
group in O(3) acting on S2 is 60 = |I| [1]. Hence, if θ is small enough, then G is infinite.

4.3. Existence of a Lower Bound in a Fixed Dimension. In this section we will
prove the following theorem:

Theorem 4.3. If G is a non-transitive group, then there exists ε, depending only on n,
so that diam(Sn/G) ≥ ε(n).

The lower bounds are not explicit since the proof is by contradiction.
In the proof, we show that a non-transitive sequence of groups cannot converge to a

transitive subgroup of SO(n+ 1). The following example is good to keep in mind while
reading the details of the proof, since we must show that this behavior cannot occur on
the sphere: (Compare with Lemma 4.9.)

Example 4.4. Let T 2 be a torus. Let Gi be lines of rational slope converging (in the
sense of Lemma 4.5) to a line of irrational slope.

Now, Gi are non-transitive groups converging to a transitive group on T 2. Note that
the corresponding Lie algebras are all dimension 1, and as subspaces, they converge to
a dimension 1 space. The Lie algebras are all abelian.

Lemma 4.5. Let G be a compact Lie group, and let Gi be a sequence of closed subgroups
of G. Then

1. There exists a subsequence and a compact group G∞ such that
(a) G∞ = {limit of any convergent sequence gi, where gi ∈ Gi for all i.}
(b) G∞ does not get any larger when a smaller subsequence is taken.
(c) for every neighborhood U of G∞, there exists io so that Gi ⊂ U for i ≥ io.
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2. There exists a further subsequence so that Gi is conjugate to G′i ⊂ G∞ in G, where
G′i converges to G∞ in the sense of a).

Notation:
We say that Gi → G∞ if Gi converges to G∞ in the sense of 1.
We say that Gi ↪→ G∞ if Gi → G∞ and Gi ⊂ G∞, as in 2.
In general, for a Lie group H, let Ho be the connected component of the identity of H.
Denote Z(H) as the center of H, and Z(h) as the center of the corresponding Lie
algebra h. Let hss be the semi-simple part of h. Every Lie algebra of a compact Lie
group can be decomposed into its center and semi-simple ideals. Thus, h = hss + Z(h).
Denote Hss = exp (hss) as the semi-simple part of Ho.

Proof of 1: Let Gi be a sequence of closed subgroups of a compact group G. Define
G∞ as in 1a.

To show that G∞ is a group, first notice that multiplication and g → g−1 are continu-
ous in G. So, given g1

∞, g
2
∞ ∈ G∞, define g1

∞g
2
∞ by the limit of the sequence g1

i g
2
i , where

g1
i → g1

∞ and g2
i → g2

∞. To show that G∞ has inverses, let g∞ ∈ G∞. Let g−1
∞ be the

limit of the sequence g−1
i , where gi → g∞ and g−1

i is the inverse of gi in Gi. It remains
to show that G∞ is closed, so let gn∞ be a sequence in G∞ converging to g∞∞ ∈ G. We
must show g∞∞ ∈ G∞. For each gn∞, find a convergent sequence of gni converging to gn∞,
which we know exists by the definition of G∞. For each n, gni converges to gn∞, and so
we can choose i(n), so that d(gnm, g

n
∞) < 1

n
for all m ≥ i(n). We will now show that

gni(n) → g∞∞. Let ε > 0. Fix no large enough so that ε− 1
no
> 0. Now choose n1 so that

for all n ≥ n1, d(g
∞
∞, g

n
∞) < ε− 1

no
, as gn∞ → g∞∞. Let N be the maximum of no and n1.

Given n ≥ N , we see that d(g∞∞, g
n
i(n)) ≤ d(g∞∞, gn∞) + d(gn∞, g

n
i(n)) ≤ ε − 1

no
+ 1
n
≤ ε, as

desired. Now, G∞ is a closed group in G, and so we know it is compact.
Notice that at this point, G∞ might only consist of id ∈ G, since there may not be

any convergent sequences gi. We will next show that by taking a subsequence, we can
assume that G∞ has Property 1c, while also proving Property 1b. Property 1c implies
that G∞ is non-trivial since a Lie group does not contain any subgroup within a small
neighborhood of the identity. Let U be an open neighborhood of G∞. Assume for
contradiction that G∞ does not have Property 1c. Then ∀io,∃i ≥ io so that Gi �⊂ U.
Choose a subsequence so that Gi �⊂ U and choose gi ∈ Gi so that gi �∈ U . Now, a
subsequence of gi must converge to g1

∞ ∈ G outside of U or on the boundary of U .
We know that g1

∞ �∈ G∞, since we assumed gi �∈ U . Restrict the groups to those
i’s which are in the subsequence converging to g1

∞. Form G1
∞ corresponding to this

restricted subsequence. From above, we know that G1
∞ is a compact group. To show

that G∞ ⊂ G1
∞, let g∞ ∈ G∞. Find a sequence gi → g∞. Look at the subsequence of gi

consisting only of the i’s we used to form G1
∞. This subsequence must also converge to

g∞, which is thus in G1
∞, by definition. Recall that g1

∞ is not in G∞, but it is in G1
∞, and

so G∞ is a proper subgroup of G1
∞. If G1

∞ does not satisfy Property 1c, then repeat the
process. If this process continues on indefinitely, then we obtain a sequence of proper
subgroups G∞ ⊂ G1

∞ ⊂ G2
∞ ⊂ . . . Gn∞ ⊂ . . . which are compact and contained in G.
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Now (Gn)o, the identity component of Gn∞, must also form a sequence of subgroups
all contained in G. Look at the the Lie algebras gn of (Gn)o. They must form a sequence
of subalgebras. These are all in g, the Lie algebra of G, which is finite dimensional, so
eventually they must all have the same dimension. Now (Gn)o form a connected sequence
of subgroups, and eventually they must all have the same Lie algebra dimension. Hence,
they must eventually be the same Lie group. Without loss of generality, we can assume
that we have a sequence of proper subgroups G∞ ⊂ G1

∞ ⊂ G2
∞ ⊂ . . . Gn∞ ⊂ . . . which

are compact, have the same dimension and have the same identity component Go.
Notice that when we choose a subsequence, then the limiting group can only get larger.

Also, among all possible limiting groups, there is a largest possible dimension, but in
general, one can achieve different limiting groups by choosing different subsequences.
We will argue that there exists a limiting group H∞, of largest possible dimension, such
that no matter what further subsequence one chooses, the limiting group does not get
any larger. If not, one gets a sequence of increasing limiting groups H1

∞, H
2
∞, ... (each

one coming from a decreasing choice of a subsequences) all of which have the same
dimension and hence the same id component but more and more components. Now one
can choose a diagonal subsequence of the choice of subsequences, and the corresponding
limiting group will contain all H i

∞ and hence have infinitely many components. But
this cannot be since the limiting group is a closed subgroup of G, a compact Lie group,
which always has only finitely many components. Hence, there exists a limiting group
H∞ which satisfies Property 1b. In addition, since the negation of Property 1c above
resulted in the formation of larger limiting groups by taking subsequences, H∞ must
also satisfy Property 1c.

Relabel Gi to the restricted subsequence of groups used to converge to H∞ as above
and in Definition 1a. Relabel so that G∞ = H∞. Now, we know that Gi → G∞. ✷

Proof of 2: We can now apply a Theorem of Montgomery and Zippin [28] which
says if G is a Lie group and K is a compact subgroup of G, then there exists in G
an open set U containing K with the property that for each subgroup H of G lying
in U , there is an element g of G such that g−1Hg ⊂ K. Applying this to our case,
let G be G and let K be G∞, as above. Choose U as in Montgomery-Zippin. Choose
io as in Property 1c. Relabel our Gi so that they begin at io, with G1 = Gio ,... We
have restricted to the tail of our original group sequence, so this will not change our
definition of G∞ as in Definition 1a. Apply Montgomery-Zippin to choose g(i) ∈ G
so that g(i)Gig(i)

−1 ⊂ G∞. Look at g(i). This is a sequence in the compact Lie
group G, so there is a subsequence which converges. Restrict the i’s further so that
g(i) → h ∈ G. To show that h ∈ NG(G∞), notice that for any g∞ ∈ G∞, we can find
gi → g∞. Restrict the gi’s to the i’s we are now using. Then gi still converges to g∞,
since we have taken a subsequence of a converging sequence. Hence, g(i)gig(i)

−1 ∈ G∞,
since g(i)Gig(i)

−1 ⊂ G∞. Taking limits, we see that hg∞h
−1 ∈ G∞, since G∞ is closed,

and so h ∈ NG(G∞). We claim that g(i)Gig(i)
−1 → G∞ is also true. Given g∞ ∈ G∞,

we will show that there is some conjugate sequence converging to g∞. Look at h−1g∞h,
which is an element of G∞ since h ∈ NG(G∞), so call it g′∞. Hence, we can choose
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gi ∈ Gi so that gi → g′∞, since Gi → G∞. Restrict this sequence to the i’s we now have.
Then, g(i)gig(i)

−1 → hg′∞h
−1 = h(h−1g∞h)h

−1 = g∞. Hence g(i)Gig(i)
−1 → G∞. Since

they are already chosen as subgroups of G∞, then we know that g(i)Gig(i)
−1 ↪→ G∞,

as desired. ✷

Remark 4.6. If Gi ↪→ G∞, where G∞ is a closed group, then if we restrict the sequence,
Gik ↪→ G∞.

Lemma 4.7. Let Gi ↪→ G∞. Then there is a subsequence and a connected normal
compact subgroup K of Go∞ so that Goi → K. There exists a further subsequence so that
Gi is conjugate to G′i within G∞, where G′i ↪→ G∞ and (G′i)

o ↪→ K.

Proof of Lemma 4.7: Assume that Gi ↪→ G∞. Now Goi are a sequence of closed
subgroups of G, so apply the proof of part a) from Lemma 4.5 to obtain a group K so
that Goi → K. To see that K is normal in G∞, let g∞ ∈ G∞ and k ∈ K. Choose gi ∈ Gi
so that gi → g∞, as in the definition of G∞. Choose goi ∈ Goi , as in the definition of K,
so that goi → k. Notice that Goi ✁Gi and so gig

o
i g
−1
i ⊂ Goi . By taking limits, we see that

g∞kg
−1
∞ ⊂ K. Therefore, K ✁G∞.

To show that by taking a subsequence, Gi is conjugate withinG∞ toG′i withG′i
o ↪→ K,

notice that G∞ is a compact subgroup of G, and so it is a Lie group. In addition,
Goi ⊂ G∞ since Gi ↪→ G∞. We know that Goi → K, so apply Lemma 4.5 to Goi → K,
within the Lie group G∞. Therefore, we can find g(i) ∈ G∞ so that g(i)Goi g(i)

−1 ↪→ K.
To show that K is a connected subgroup of Go∞, notice that conjugation preserves

components, so the conjugates of Goi are connected. Since they are subgroups of K,
they must be contained within Ko. Yet, the components of K are separated, so the
conjugates must converge within Ko. Hence K = Ko. In addition, Goi ⊂ Go∞, since
Gi ⊂ G∞. Then K ⊂ Go∞ since Go∞ is closed. Since Go∞ ⊂ G∞ and K ✁ G∞, we see
that K ✁Go∞, as desired.

To show that g(i)Gig(i)
−1 ↪→ G∞, notice that g(i)Gig(i)

−1 ⊂ G∞ since Gi ⊂ G∞, by
definition of Gi ↪→ G∞, and g(i) ∈ G∞ as above. To show that g(i)Gig(i)

−1 → G∞,
notice that even though we have restricted the i’s used in the definition of G∞, we still
have Gi → G∞ by the remark at the end of the proof of Lemma 4.5. Thus, by a similar
argument in the proof of Lemma 4.5b, we see that g(i)Gig(i)

−1 → G∞. ✷

Lemma 4.8. [3] There are only finitely many semi-simple subalgebras of a compact
semi-simple Lie algebra, up to conjugacy.

Proof of Lemma 4.8: Let A be the set of k−dimensional subalgebras of a compact
semi-simple Lie algebra g. Let h ⊂ g be semi-simple, and assume that the dimension of
h is k. Let Bh be the set of all subalgebras in A conjugate to h. We will show that Bh

is open and closed in A and hence a component of A.
To show that Bh is open, let h1 ∈ Bh. We’ll show that there is a neighborhood U of h1

so that h2 ⊂ U =⇒ h2 is conjugate to h1. Let H1 and H2 be the corresponding connected
subgroups of the corresponding Lie group G. Notice that Qi = −Bg|hi

is invariant under

Ad(Hi) and so it extends to a bi-invariant metric on Hi, which we again call Qi. We will
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now show that the diameter of Hi with bi-invariant metric Qi is bounded independently
of i.

If Q is a bi-invariant metric on G, then RicQ(x, y) = −1
4
Bg. To see this, note that

by [13, page 103] R(x, y)z = 1
4
[[x, y], z] for any Lie group with a bi-invariant metric.

Therefore,

Ric(x, y) = tr(z → R(x, z)y)

= tr(z → 1
4
[[x, z], y]

= tr(z → −1
4
[[z, x], y]

= tr(z → −1
4
[y, [x, z]]

= −1
4
tr ady ◦ adx

= −1
4
B(y, x)

= −1
4
B(x, y),

as desired.
Notice that Bhi = λiBg|

hi
for some λi, and so

RicQi = −1

4
Bhi = −1

4
λiBg|

hi
=

1

4
λiQi.

Applying Bonnet-Myers, we see that diam(Ho
i ,Qi) ≤ 2π√

λi
. Now, the exponential map

maps {X ∈ g|Qi(X,X) ≤ 2π√
λi
} onto Hi. This implies that if h1 is close to h2, then H1 is

close to H2. We apply Montgomery-Zippin to H1 and H2 within the compact Lie group
G to obtain conjugacy of H1 and H2. Hence we have conjugacy of the subalgebras via
the exponential map.

To show that Bh is closed, let hi be an infinite sequence of subalgebras in Bh. Now,
hi = Ad(gi)h, for gi ∈ G, where gi → g∞ for some g∞ ∈ G by compactness of G. Hence,
hi → Ad(g∞)h ∈ Bh, as desired.

To show that Bh is closed, let h1 ∈ Bh.
Now Bh is a component of A, which has only finitely many components by compact-

ness, and so we obtain the desired result. ✷

Lemma 4.9. Let Gi ↪→ G∞ and Goi ↪→ K. Then there exists a subsequence so that the
Lie algebras of Goi converge as subspaces to a subalgebra of the Lie algebra of K.

a) If the Lie algebra of K is non-trivial and semi-simple, then we can find a subse-
quence so that Goi = K.

b) If Goi is semi-simple, then K is semi-simple.
c) If K is not abelian or semi-simple, then we can find a subsequence, up to conjugacy,

such that the semi-simple part of Goi is equal to the semi-simple part of K and
Z(Goi )

o ⊂ Z(K).

Proof of Lemma 4.9: We know that K is connected, as in Lemma 4.7, so consider
the Lie algebras gi and K, all inside of the vector space V . We will show that gi converge
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as subspaces to a subalgebra of K. Since Goi ⊂ K, we know that gi is a subalgebra of K.
We can assume that the gi all have the same dimension m. The set of all m dimensional
subspaces in V is compact, so choose a converging subsequence and rename it gi. Now
gi converge to a subspace, call it s of dimension m. To show that s is an algebra, let
s1, s2 ∈ s. Pick xi, yi ∈ gi so that xi → s1 and yi → s2. Now [xi, yi] ∈ gi ⊂ K. Taking
limits, we see that [s1, s2] ∈ s, as desired. and s is a subalgebra of K. Define S = exp s.
Then S is a connected subgroup of K.

Proof of a): Assume that K is semi-simple. If gi is not semi-simple for arbitrarily
large i, then it must have a non-trivial center. Look on the group level and restrict to
these i’s. By Lemma 4.5, we can assume that Z(Goi )

o → L. We still know that Goi ↪→ K
by the remark at the end of the proof of Lemma 4.5. Since elements in the center will
commute with all other group elements in each Goi , then in the limit, these elements
will commute with all other group elements in K and hence converge to elements in
Z(K). Therefore, L ⊂ Z(K). In addition, by Lemma 4.5, we can assume that Z(Goi )

o

are conjugate to a subgroup of Z(K). Yet, we assumed that K was simple, and we know
that K is connected. Hence, the center of K must be finite. Hence Z(Goi )

o are conjugate
to subgroups of a connected finite group and therefore must be trivial. Hence, Z(gi)
must be trivial, a contradiction to our assumption.

Therefore, gi must be semi-simple. We have already assumed that the gi all have the
same dimension m. Look at gi = g1

i + g2
i + ...+ g

q
i , where each factor is a simple ideal.

By restricting to a subsequence, we can assume that each gi has exactly q simple ideals.
We know that Bgi|gp

i

= λpiBK|gp
i

for each p. The g
p
i are all subalgebras of K, which is

also semi-simple. Since they are simple, they are certainly semi-simple. There are only
finitely many semi-simple subalgebras of a semi-simple Lie algebra, up to conjugacy, by
Lemma 4.8. Since the Killing form is preserved under conjugacy, then there are only
finitely many values for λpi . They are each non-zero since g

p
i is simple, so choose the

smallest λi and call it λ. We know that λ is not zero.
Notice that Qi = −BK|gi

is invariant under Ad(Goi ) and so it extends to a bi-invariant
metric on Goi , which we again call Qi. We will now show that the diameter of Goi with
bi-invariant metric Qi is bounded by a constant independent of i.

We know that

RicQi = −1

4
Bgi ≥ −

1

4
λBK|

gi
=

1

4
λQi.

Applying Bonnet-Myers, we see that diam(Go
i ,Qi) ≤ 2π√

λ
.

Let go∞ ∈ K and choose goi ∈ Goi with limgoi = go∞. Choose xi ∈ gi with |xi| ≤ 2π√
λ

so

that goi = expxi. Hence, xi will converge to x∞ ∈ s. Since exp is continuous, we know
that go∞ = expx∞ ∈ S. Hence K = S. Now the connected group Goi are subgroups of
K with the same Lie algebra dimension, so they must be the same Lie group. Hence,
Goi = K.✷

Proof of b): Assume that Goi is semi-simple. Assume for contradiction that K is
not semi-simple. Then K = Kss + Z(K).
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Look at the projection π : Kss ⊕ Z(K) → Z(K), which is a homomorphism of Lie
algebras. Now π|gi : gi → Z(K) is also a homomorphism, and so ai = ker(π|gi), the
kernel, is an ideal in gi. In addition, gi is semi-simple, and so there exists an ideal bi so
that gi = ai ⊕ bi. We know that bi is semi-simple since gi is semi-simple.

Then π|gi : gi/ker(π|gi) → Z(K), and so π|gi : bi → Z(K) is one-to-one. Therefore
bi is isomorphic to a subalgebra of Z(K). We have arrived at a contradiction unless
bi = 0, since bi is semi-simple. Hence gi ⊂ Kss. Now, repeat the proof of a) to see
that Goi = Kss. Hence Kss = K, by definition of convergence of Goi to K. Thus, K is
semi-simple, as desired.✷

Proof of c): Assume that K is not abelian. As in the proof of a), we know that
there exists a subsequence so that Z(Goi )

o → L ⊂ Z(K). Up to conjugacy within
K and by taking a further subsequence, we may assume that Z(Goi )

o ↪→ L ⊂ Z(K),
Goi ↪→ K, and Gi ↪→ G∞. This holds by arguments similar to Lemma 4.7 using the
fact that Z(kGoik

−1)o = kZ(Goi )
ok−1, for k ∈ K, which holds as conjugation preserves

components and the center.
Notice that if Gi were abelian for arbitrarily large i, then restricting to those groups,

Gi ↪→ K, and so K would have to be abelian, a contradiction. Hence, we know that
there is an io so that gssi is non-trivial for i ≥ io. Restricting to these i’s, we have that
(Goi )

ss �= 0.
Define N as the compact group so that (Goi )

ss → N . Up to conjugacy withinK and by
taking a further subsequence, we may assume that (Goi )

ss ↪→ N , as conjugation preserves
the semi-simple factor. Also, Goi ↪→ K, and Gi ↪→ G∞, as before. In addition, this does
not affect Z(Goi )

o ↪→ L. Notice that Z(Goi )
o ↪→ L ⊂ Z(K) implies Z(Goi )

o ⊂ Z(K) and
so conjugation by an element of K is the identity on Z(Goi )

o. Hence, we still have that
Z(Goi )

o ↪→ L ⊂ Z(K).
Apply part b) to show that N is semi-simple. Now N = (Goi )

ss by part a).
We will show that we can write Goi as N · Z(Goi )

o, so let goi ∈ Goi . First notice that
both N = (Goi )

ss and Z(Goi )
o are connected subgroups of Goi . Look on the Lie algebra

level. Then gi = (goi )
ss + Z(goi ). Since Goi is compact, we can find x ∈ gi, xss ∈ (goi )

ss,
and xZ ∈ Z(goi ) so that goi = exp(tx) = exp(txss + txZ), where x = xss + xZ. Since
[xss, xZ] = 0, as xZ ∈ Z(goi ), we know that goi = exp(txss + txZ) = exp(txss) · exp(txZ).
Thus, goi = ni · zi, for some ni · zi ∈ N · Z(Goi )

o, as desired.
To show that (Goi )

ss = Kss, let goi ∈ Goi . Then gi = ni · zi ∈ N · Z(Goi )
o. Taking

limits, we see that Goi → N ·Z(K), since Z(Goi )
o ↪→ Z(K). Yet Goi ↪→ K = Kss ·Z(K).

Hence, N = Kss, and so (Goi )
ss = Kss, as N = (Goi )

ss. ✷

Lemma 4.10. If G is transitive on M , a connected manifold, then Go is also transitive
on M .

Proof of Lemma 4.10: Let Go be the connected component of the identity. By a
standard argument, we will show that any orbit is both open and closed. Notice that
Go∞ is compact and hence the orbit is compact and hence closed. To show that an orbit
is open, pick a point p in the orbit of Go∞. InM , we can find a neighborhood around this
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point which stays within the orbit. Intersect this neighborhood with a neighborhood of
the identity. Since p is in the orbit of Go∞, we know this is non-empty. Hence any orbit
is open. Since M is connected, we know that the orbit must be everything or empty.
We know the orbit is not empty, so it is everything. Therefore, Sn/Go∞ is transitive.✷

Lemma 4.11. The following is the classification of connected transitive orthogonal sub-
groups and the spheres on which they act:[2]

1)SO(n+ 1) on Sn

2)U(n) ⊂ SO(2n) on S2n−1

3)SU(n) ⊂ SO(2n) on S2n−1

4)Sp(n)× Sp(1) ⊂ SO(4n) on S4n−1

5)Sp(n)× U(1) ⊂ Sp(n)× Sp(1) on S4n−1

6)Sp(n) ⊂ Sp(n)× Sp(1) ⊂ SO(4n) on S4n−1

7)Spin(9) ⊂ SO(16) on S15 = Spin(9)/Spin(7)
8)Spin(7) ⊂ SO(8) on S7 = Spin(7)/G2

9)G2 ⊂ SO(7) on S6 = G2/SU(3)

Theorem 4.3 If G is a non-transitive group, then there exists ε, depending only on n,
so that diam(Sn/G) ≥ ε(n).

Proof of Theorem 4.3: Fix n, and assume for contradiction that we have a sequence
of closed, non-transitive Gi ⊂ O(n+ 1) so that diam(Sn/Gi)→ 0.

We know that conjugation does not change the diameter of the resulting quotient.
Therefore, changing the sequence via restriction and conjugation, will not change that
diam(Sn/Gi) → 0. So, without loss of generality, we may define G∞ as in Lemma 4.5
and we may assume that Gi ↪→ G∞ and Goi ↪→ K by Lemmas 4.5 and 4.7.

Now diam(Sn/G∞) = 0 since a group has smaller resulting diameter when compared
with the resulting diameter of its subgroups. Since G∞ is closed, then G∞ must be
transitive on Sn, as desired.

If K = Id, then Goi = Id. Hence, Gi is finite. Yet, the diameter of Sn/Gi → 0. This
contradicts Theorem 3.14 which produces a lower bound, ε(n), on the diameter resulting
from finite groups . Hence K �= Id and Goi �= Id.

Case 1): Go∞ is simple
We know that K is connected and normal in Go∞. In addition, Go∞ is simple and

K �= Id. Hence, we know that K = Go∞. Hence K is transitive and simple. Apply
Lemma 4.9 to see that Goi = K. Since K is transitive, we see that Goi is transitive, and
so we have arrived at a contradiction.

Case 2): Go∞ is not simple
Since Go∞ is not simple, 2), 5) and 4) in Lemma 4.11 are the only groups which remain

to be examined.
Converting the notation in Lemma 4.11 to our notation in O(n+ 1) acting on Sn, we

see that Go∞ is not simple only when n + 1 is even. Let n + 1 be even. Let j = n+1
2

.
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Then Go∞ is one of the following,

a)U(j) ⊂ SO(n+ 1),
b)Sp( j

2
)× Sp(1) ⊂ SO(n+ 1), if j is even

c)Sp( j
2
)× U(1) ⊂ SO(n+ 1), if j is even

where b) and c) only occur if n+ 1 is divisible by 4.
We will first examine these actions. In a), write Rn+1 = Cj. Then

A ∈ U(j) : v → Av, and z ∈ U(1) = Z(U(j)) : v → zv. In b), examine Rn+1 = H
j
2 .

Then A ∈ Sp( j
2
) and q ∈ Sp(1) acts via v → A(v)q. In c), A ∈ Sp( j

2
) and

z ∈ U(1) ⊂ Sp(1) acts via v → A(v)z.
We know that, K is connected, non-trivial and a normal subgroup in Go∞, and that

Goi are subgroups of K which converge to K.
We will now more closely examine the actions. In a), the only proper, connected,

normal subgroups are U(1), the Hopf action, and SU(j), which acts transitively. In
b), the only proper, connected, normal subgroups are Sp( j

2
), which acts transitively,

and Sp(1). In c), the only proper, connected normal subgroups are Sp( j
2
), which acts

transitively, and U(1).
Hence, we see that K must be Go∞ itself, or SU(j), U(1), Sp( j

2
), or Sp(1). If

K = SU(j) or Sp( j
2
), then K is simple and transitive, so apply arguments in Case 1) to

obtain a contradiction. We will examine the remaining groups to obtain a contradication
in each case.

Case 2A): K = U(1)
If we are in a), then the U(1) action on Rn+1 is the Hopf action. To further examine

the U(1) action in c), look at C2m = Hm via (a, b)→ a+ jb = v. To show that the U(1)
action is also the Hopf action, notice that
z(a, b) = (za, zb) = (az, bz)→ az + j(bz) = (a+ jb)z = vz.

We know that Goi �= Id is connected and a subgroup of K = U(1). Hence, Goi is U(1).
Now,

Sn/Gi =
Sn/Goi
Gi/Goi

=
Sn/U(1)

Gi/U(1)
=
CP j−1

Gi/U(1)
.

Using the submersion metric, we see that Gi/U(1) is in the isometry group of CP j,
since Gi ✁ U(1) and so orbits get mapped to orbits. We know that Gi/G

o
i = Gi/U(1)

is finite. Therefore Gi/U(1) is a finite subgroup of the isometry group of CP n. Apply

Corollary 3.14.1 to obtain a lower bound on the diameter of CP j−1

Gi/U(1)
. We have arrived

at a contradiction to the assumption that the diameter of Sn/Gi approaches 0.
Case 2B): K = Sp(1)
We know that Goi �= Id is connected and a subgroup of K = Sp(1). But, the only

connected subgroups of Sp(1) are great circles in S3, which cannot converge to
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S3 = Sp(1). Hence, Goi is Sp(1). Also,

Sn/Gi =
Sn/Goi
Gi/Goi

=
Sn/Sp(1)

Gi/Sp(1)
=

HP
j
2
−1

Gi/Sp(1)
.

The contradiction is obtained in a similar fashion to Case 3A), using Corollary 3.14.1

to obtain a lower bound on the diameter of HP
j
2−1

Gi/Sp(1)
.

Case 2C): K = Go∞
K is transitive. Even though K is not simple, we will still be able to apply arguments

which resemble those in Case 1).
Case 2C1): K = Sp( j

2
)× Sp(1)

Now K is semi-simple, so apply part a) of Lemma 4.9 to restrict the sequence so that
Goi = K. Since K is transitive, we see that Goi is transitive, and so we have arrived at
a contradiction.

Case 2C2): K = U(j) ⊂ SO(n+ 1) or Sp( j
2
)× U(1)

We satisfy the conditions of part c) of Lemma 4.9, since K in not abelian or semi-
simple. By Lemma 4.9 we can restrict the sequence so that up to conjugacy,
(Goi )

ss = Kss. We have arrived at a contradiction since Kss = SU(j) or Sp( j
2
), which is

transitive.

There are no other cases remaining, so the theorem is proven. ✷
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Summary of Diameter Results

Class of Resulting Lower Bound Dimension Limit as
Groups or Actions Spaces on Diameter Achieved n→∞

Reducible Actions π
2

π
2

(Grove, Borzellino)
Free Actions

(McGowan,91, Manifolds π
9.63

3 π
2

Flach,92)
Orbifolds and

Dimension 2 Alexandrov π
4.82

2
Groups ([20],[15]) Spaces

Coxeter Groups Coxeter π
8.10

3 π
2

Orbifolds

Finite Groups Orbifolds ∃ explicit ε(n) n 0

Cohomogeneity-1
Actions Intervals π

6
7 and 13 π

4
(Hsiang-Lawson,71)

Infinite, Closed,
Non-Transitive Alexandrov ∃ε(n) n

Groups Spaces

Table 2. Summary of Diameter Results
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