

To derive the parametric equations for the Witch of Agnesi we should refer to the graph below and assume certain equations.

Assume the following:
1.) $\mathrm{x}=\mathbf{A} \mathbf{Q}$
2.) $y=2-\mathbf{A B} \sin (t)$
3.) $\mathbf{A B} * \mathbf{O A}=(\mathbf{A Q})$

We know that $\tan (t)=y / x$. This also tells us that $\cot (t)=x / y$.
We can solve this for x and get

$$
x=y \cot (t)
$$

As in our example, $\mathrm{y}=2$, we can conclude that the parametric equation for x is:

$$
x=2 \cot (t)
$$

Now that we have the parametric equation for x , we can now the equation for y .
From equation 3 above, we know that

$$
\mathbf{A B}=\frac{\mathbf{x}^{\wedge} 2}{\mathbf{O A}}
$$

Since $\mathbf{O A}$ is the hypotenuse of the triangle,

$$
\mathbf{A B}=x \cos (t)
$$

From our parametric equation for x , we can use substitution and get

$$
\mathbf{A B}=2 \cot (t) \cos (t)
$$

This can be transformed into

$$
\mathbf{A B}=2(\cos (\mathrm{t}) / \sin (\mathrm{t}))^{*} \cos (\mathrm{t})
$$

By multiplication we get

$$
\mathbf{A B}=\left(2 \cos ^{\wedge} 2(\mathrm{t})\right) / \sin (\mathrm{t})
$$

If we substitute this into our equation 2 , we have

$$
y=2-\left(2 \cos ^{\wedge} 2(t) / \sin (t)\right)^{*} \sin (t)
$$

We can now reduce this to

$$
y=2-2 \cos ^{\wedge} 2(t)
$$

By substituting the trigonometric identity $\cos ^{\wedge} 2(t)=1-\sin ^{\wedge} 2(t)$, we get

$$
y=2-2\left(1-\sin ^{\wedge} 2(t)\right)
$$

which reduces to the final parametric equation

$$
y=2 \sin ^{\wedge} 2(t)
$$

Thus we get the general parametric equations to the witch of Agnesi:

$$
\begin{gathered}
x=2 \cot (t) \\
y=2 \sin ^{\wedge} 2(t)
\end{gathered}
$$

