Cox's Work

Cox did work on the difference equation, $aY_{x+1} + bY_x = q(x)$ where a and b are complex numbers that do not equal 0 and whose sums do not equal zero. q(x) is a given polynomial. We will look at the more specific form, $aY_{x+1} + bY_x = (a + b)x^v$. Cox used methods similar to N.E. Norland's methods with studying the equations $Y_{x+1} - Y_x = vx^v$ and $Y_{x+1} + Y_x = 2x^v$. Cox shows that what is called the generalized Euler polynomial is a solution to $aY_{x+1} + b^*Y_x = (a + b)x^v$.

Cox uses certain sequences of numbers. One of these sequences, { k } is defined by $a^*(k + a + b)^v + b^*k^v = 0$ where v = 1, 2, 3,...,c. In the binomial expansion k^v is replaced by k_v . So when v=1 we get

$$a(k + a + b) + bk = 0$$

$$ak + a^{2} + ab + bk = 0$$

$$k(a + b) = -a^{2} - ab$$

$$k = -a(a+b)/(a+b)$$

$$k = -a$$

This implies that $k_{1} = -a$

We run into a little bit of a problem when v=0 we get

$$a(k+a+b)^0 + bk^0 =$$

$$\mathbf{a} + \mathbf{b} = \mathbf{0}$$

This leaves us with no k to solve for. Cox fixes this problem by defining $k_0 = 1$. So we receive the sequence $k_0 = 1$, $k_1 = -a$, $k_2 = a(a - b)$, $k_3 = -a(a^2 - 4ab + b^2)$, ... Now put k(a + b) = S into $a(k + a + b)^v + bk^v = 0$ and after expansion replace S^r with S₂.

So $S_r = k_r / (a+b)^v$. $a(k + a + b)^v + bk^v = 0$ becomes

$$a((a + b)S + (a + b))^{v} + b((a + b)S)^{v} = 0$$

$$a((a + b)(S+1))^{v} + b((a + b)S)^{v} = 0$$

$$a(a + b)^{v}(S+1)^{v} + b(a + b)^{v}S^{v} = 0$$

$$a(S+1)^{v} + b(S^{v}) = 0$$

Letting q(z) be and polynomial in z we have the symbolic relation $a^{*}q(S+1) + b^{*}q(S) = (a+b)q(0).$

Now replace q(z) by q(z +x) to get $a^{*}q(x + S + a) + b^{*}q(x + S) = (a + b)q(x)$. The symbolic expansion of q(x +s) is a solution to the difference equation $aY_{x+1} + bY_x = (a + b)q(x)$.