Cox's Work

Cox did work on the difference equation, $a Y_{x+1}+b Y_{x}=q(x)$ where a and b are complex numbers that do not equal 0 and whose sums do not equal zero. $\mathrm{q}(\mathrm{x})$ is a given polynomial. We will look at the more specific form, $a Y_{x+1}+b Y_{x}=(a+b) x^{v}$. Cox used methods similar to N.E. Norland's methods with studying the equations $Y_{x+1}-Y_{x}=v x^{v}$ and $Y_{x+1}+Y_{x}=2 x^{v}$. Cox shows that what is called the generalized Euler polynomial is a solution to $a Y_{x+1}+b^{*} Y_{x}=(a+b) x^{v}$.

Cox uses certain sequences of numbers. One of these sequences, $\{k\}$ is defined by $a^{*}(k+a+b)^{v}+b^{*} k^{v}=0$ where $v=1,2,3, \ldots, c$. In the binomial expansion k^{v} is replaced by k_{v}. So when $\mathrm{v}=1$ we get

$$
\begin{gathered}
a(k+a+b)+b k=0 \\
a k+a^{2}+a b+b k=0 \\
k(a+b)=-a^{2}-a b \\
k=-a(a+b) /(a+b) \\
k=-a
\end{gathered}
$$

This implies that $\mathrm{k}_{1}=-\mathrm{a}$
We run into a little bit of a problem when $v=0$ we get

$$
\begin{gathered}
a(k+a+b)^{0}+\mathrm{bk}^{0}=0 \\
\mathrm{a}+\mathrm{b}=0
\end{gathered}
$$

This leaves us with no k to solve for. Cox fixes this problem by defining $\mathrm{k}_{0}=1$. So we

$$
\text { receive the sequence } k_{0}=1, k_{1}=-a, k_{2}=a(a-b), k_{3}=-a\left(a^{2}-4 a b+b^{2}\right), \ldots
$$

Now put $k(a+b)=S$ into $a(k+a+b)^{v}+b k^{v}=0$ and after expansion replace S^{r} with S_{r}.
So $\quad S_{r}=k_{r} /(a+b)^{v} \cdot a(k+a+b)^{v}+b^{v}=0$ becomes

$$
\begin{gathered}
a((a+b) S+(a+b))^{v}+b((a+b) S)^{v}=0 \\
a((a+b)(S+1))^{v}+b((a+b) S)^{v}=0 \\
a(a+b)^{v}(S+1)^{v}+b(a+b)^{v} S^{v}=0 \\
a(S+1)^{v}+b\left(S^{v}\right)=0
\end{gathered}
$$

Letting $\mathrm{q}(\mathrm{z})$ be and polynomial in z we have the symbolic relation

$$
a^{*} q(S+1)+b^{*} q(S)=(a+b) q(0)
$$

Now replace $q(z)$ by $q(z+x)$ to get $a * q(x+S+a)+b * q(x+S)=(a+b) q(x)$.
The symbolic expansion of $q(x+s)$ is a solution to the difference equation

$$
a Y_{x+1}+b Y_{x}=(a+b) q(x) .
$$

