The Order of a Difference Equation and Initial Conditions

.Suppose we wanted to know Y_{7}. From the rule we can see,

$$
\mathrm{Y}_{7}=\mathrm{Y}_{6}+\mathrm{Y}_{5}=8+5=13
$$

This comes easily because we have already generated the sequence. Pretend now that we do not have the sequence calculated for us and all we have is $Y_{k+2}=Y_{k+1}+Y_{k}$. Now determining Y_{7} becomes rather challenging because we have no way of knowing the values of Y_{6} or Y_{5}. To help with this dilemma we will look back at the generalized difference equation of order $n, \mathrm{Y}_{\mathrm{k}+\mathrm{n}}=\mathrm{F}\left(\mathrm{k}, \mathrm{Y}_{\mathrm{k}+\mathrm{n}-1}, \mathrm{Y}_{\mathrm{k}+\mathrm{n}-2}, \mathrm{Y}_{\mathrm{k}}\right)$ in comparison to the Fibonacci equation and provide a couple more definitions.

In the Fibonacci difference equation, $\mathrm{n}=2$ and the order is 2 . The order of a difference equation is defined by the difference between the highest and the lowest terms in the equation. The highest term in the Fibonacci equation is Y_{k+2} and the lowest is Y_{k}. $\mathrm{k}+2-\mathrm{k}=2$ thus the order is 2 . This is how difference equations get their name. The terms in the equation are discrete differences. In general the highest term is $\mathrm{k}+\mathrm{n}$ and the lowest term is $\mathrm{k} . \mathrm{k}+\mathrm{n}-\mathrm{k}=\mathrm{n}$ thus n is the order of the generalized equation. The order helps to determine the number of initial conditions needed to lock down a sequence. If the order of the difference equation is n, then n initial conditions are needed to make the sequence unique. The Fibonacci equation needs 2 initial conditions. The first member determined by the equation is Y_{2} where $\mathrm{k}=0$. Therefore we need to define Y_{1} and Y_{0}. With the initial conditions $\mathrm{Y}_{1}=1$ and $\mathrm{Y}_{0}=0$, the Fibonacci sequence is complete and unique.

