
Olga’s main focus was number theory, but she was later introduced to a

branch of math called matrix theory.  “A matrix is a rectangular array of

symbols, usually numbers, neatly arranged in columns and rows” (Math Trek,

1).  Matrices come into play in a lot of math aspects.  Some of these aspects

are algebra, differential equations, probability, and other fields as well.

Engineers and theoretical physicists use matrices as well (Math Trek, 1).

Taussky-Todd was introduced to matrix theory during WWII after

taking a position at the National Physical Laboratory in London.  She worked

here with a group investigating flutter, which is an aerodynamic phenomenon.

In flight, interactions between aerodynamic forces and a flexing

airframe induce vibrations.  When an airplane flies at a speed greater

than a certain threshold, those self-excited vibrations become

unstable, leading to flutter.  Hence, in describing an airplane, it’s



important to know what the flutter speed is before the aircraft is

built and flown (Math Trek, 1).

Engineers had to use certain differential equations to estimate the flutter

speed and this process led to finding the eigenvalues of a square matrix.

“An eigenvalue is the scalar multiple of nonzero vectors of a given matrix”

(paper on the Internet, 4).  A square matrix is one in which the number of

rows equals the number of columns (i.e. an mxm matrix). Eigenvalues are

useful in geometry when dealing with R3 space and vectors along a line given

by λx.  They can be determined algebraically also.  Given a matrix ‘A’, you can

find the eigenvalues by evaluating the determinant of (λI-A) and setting

that equal to zero.  The equation looks like this:  det(λI-A)=0.   Eigenvalues

are useful in dynamical systems as well.  Olga used them to help find the

vibrations that interactions between aerodynamic forces and a flexing

airframe induce.  This was a very time consuming task.  Olga found a way to

reduce the amount of calculation.  She wanted to refine a method for

getting useful information about the eigenvalues without having to go to all

the extra trouble involved in computing them exactly.  She used a theorem

named for a Russian mathematician called the Gerschgorin Circle Theorem

(Math Trek, 1).



This theorem deals with a square matrix that has entries that can be

complex numbers.  “A complex number has two parts and can be written as

a+bi, where a is the real part and bi is the imaginary part, with i representing

the square root of –1” (Math Trek, 1).  Each complex number has a real x-

coordinate and an imaginary y-coordinate.  The complex number 2+5i would

be plotted as the point (2,5).

Olga began to use the theorem as a way to zero in on the eigenvalues

graphically.  “The theorem states that the eigenvalues of an n x n matrix A

with complex entries lie in the union of closed disks, the Gerschgorin disks in

the complex z plane” (paper, 4).

The Gerschgorin Circle Theorem:

Let A be an n x n matrix and RI denote the circle in the complex plane

with center aij and the radius

Ri = {z ε C such that z-aii < Σ aij }

Where the sum runs j≠i from j=1 to n, and C denotes the complex

plane.  The eigenvalues A are contained within R = U Ri , where i runs



from 1 to n.  Moreover, the union of any k of these circles that do not

intersect the remaining (n-k) contain precisely k (counting

multiplicities) of the eigenvalues.

Here is an example of a square matrix with complex entries:

1+i 3 2

1 2+7i 0

0 4 -2

“All of the eigenvalues of this matrix lie under the union of certain

disks, whose centers are the values along the diagonal and whose radii

are the sum of the absolute values of the off-diagonal entries in a

given row” (Math Trek, 2).  The previous statement can be made

according to the Gerschgorin Circle Theorem.

If we look at this matrix, the circle corresponding to the first row would be

centered at the point (1,1) and have a radius of 5.  The second circle would

be centered at the point (2,7) and have a radius of 1.  The third circle would

have its center at (-2,0) and a radius of 4.  Hence, the three eigenvalues



would be complex numbers that lie somewhere in the complex plane within

the areas defined by those circles.

In flutter equations, those disks had a particular pattern.  This was a break

for Taussky-Todd and allowed her to develop ways to make the circles

smaller so that they would not overlap as much and would provide much

sharper estimates of the eigenvalues (Math Trek, 2).


