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Jean Taylor was born in San Mateo, California on

September 17, 1944.  She later moved to Sacramento.  As a

child she excelled in her academics.  However, her first

experience with blatant sexism was in high school with her

crush.  He claimed it was not fair that she received higher

marks than he did, for he needed better grades for his

“career.”  This experience was only momentary though.  Mrs.

Taylor now claims “It inoculated me against it (sexism).”

Unfortunately, she lost touch with reality and started

hanging out with the bad crowd.  She was known as the

“ringleader” of the mischievous children.

After high school she enrolled in Mount Holyoke, a

women’s college, in Massachusetts because she had never

been east of the Rocky Mountains.  She majored in chemistry

and graduated Phi Beta Kappa, first in her class in 1966.

Taylor, however, through her rebellious childhood, learned

to question authority and was not able to do so in the



chemistry laboratory at Mount Holyoke.  This began to

inspire her exploration into other fields of study, but she

still had a love for chemistry.  She later enrolled in the

University of California at Berkley where she was

influenced by her hiking club and her boyfriend to audit

algebraic topology and differential geometry.  These

courses encouraged her to switch her emphases to

mathematics but yet she still received her master’s degree

in physical chemistry in 1968.  She also became very active

in the protesting of the Vietnam War.  Later, she moved to

England shortly after her wedding of her long-time

boyfriend, Frederick J. Almgren.  Here, she pursued her

master’s degree in mathematics at the University of Warwick

and graduated in 1971.

Soon after, she returned to the U.S. and attended

Princeton’s doctoral program in mathematics.  In 1973 she

received her PhD. and focused her dissertation on the topic

of “Regularity of the Singular Set of Two-Dimensional Area-

Minimizing Flat Chains Modulo 3 in R^3.”  This solved the

problem on length and smoothness of soap-film triple

functions curves, which had puzzled mathematicians for

centuries.

The first person to work on soap films was a Belgian

professor of Physics and Anatomy by the name of Joseph



Plateau.  He began to study soap films in 1829, but never

proved his theories. Jean Taylor’s main work was that of

proving Plateau’s problem.  Plateau’s problem stated: if

you start with a circle of wire that has been twisted,

bent, and stretched into some new shape and dip it into

soapy water and pull it out again, what kind of shape will

the soap film result in? Surface tension makes the

resulting soap film minimize its area while still spanning

the wire frame.  Taylor proved that a compound soap bubble

spanning a wire frame consists of flat surfaces smoothly

joined together.  She also confirmed that soap bubble

surfaces meet in only two ways: either exactly three

surfaces meet along a smooth curve of 120 degrees or six

surfaces meet at a vertex.  When surfaces meet along curves

or when curves and surfaces meet at points, they do so at

equal angles of about 109 degrees.  The pictures below

illustrate the symmetry of the angles.



In nature, things tend to use the least amount of

energy.  For example, water does not run up hill.  The

least amount of energy would be to let gravity take it

downhill.  Nor will a ball roll up a hill on it’s own.  In

relation to the soap bubble, a soap film wants to use the

least amount of energy possible.  In doing this, a soap

film is created with minimal surface area.

Shape       # of sides   Volume     Surface Area

Tetrahedron                 4                  1 cubic inch         7.21 square inches
Cube                            6                  1 cubic inch         6 square inches
Octahedron                  8                  1 cubic inch         5.72 square inches
Dodecahedron            12                 1 cubic inch         5.32 square inches
Icosahedron                20                 1 cubic inch         5.15 square inches
Sphere                     infinite             1 cubic inch         4.84 square inches

The chart above represents many possible shapes of

soap bubbles, and illustrates that the minimal surface area

is actually in a sphere.  But why does a soap film create

the thinnest layer of film?  Taylor describes the nature of

water and soap molecules.  A non-polar layer of soap

molecules that reduces surface tension covers the surface

of the film. The addition of the soap to the water has

important effects on the formation of the film in two ways.

The surface acquires stabilizing elastic properties by



stretching the layer of soap molecules.  This also

minimizes the thickness to basically the length of two soap

molecules stacked end to end, one for each side of the

film.  Gravity causes the water molecules to “slide” out

leaving only the soap molecules behind.

Another characteristic of soap bubbles is that there

is a constant mean curvature.  Mean curvature can best be

explained in taking any arbitrary object and picking a

point on the surface of that object.  Then take a plane

that runs through the point and rotates around the normal

vector.  (The normal vector is found by taking the second

derivative at that point.)  Next, take average of all the

curves formed by rotating the plane.  This is called the

mean curvature.  An analytical way to find mean curvature

is best explained by the following, which is found in

Differential Geometry of Curves and Surfaces:

The formula for finding the line of curvature is

K=(eg-f^2)/(Eg-F^2)={-Ψ’(Ψ’ϕ”-Ψ”ϕ’)}/ϕ

Where ϕ is always positive, and Ψ’=0 where the tangent

line to the generator curve is perpendicular to the axis or

rotation (normal vector) or ϕ’Ψ”-Ψ’ϕ”=0 where the curvature



of the generator curve is zero.  We can simplify this by

taking a derivative and get

K=-ϕ”/ϕ

This can be used to determine surfaces of revolution

of curvature.  To compute principal curvatures we can make

the observation that:

K=eg/EG,  H=.5(eG+gE)/(EG)

Thus the principal curvature of a surface of revolution is

given by:

e/E=-(Ψ’ϕ)/ϕ^2=-Ψ’/ϕ

g/G=Ψ’ϕ”-Ψ”ϕ’

Therefore, the mean curvature is:

H=.5(-Ψ’+ϕ(Ψ’ϕ”-Ψ”ϕ’)/ϕ)



The equation to the above is:

X(u,v)=(u-(u^3/3)+uv^2, v-(v^3/3)+uv^2, u^2-v^2)

From Differential Geometry of Curves and Surfaces, we

are given that the largest curvature of the above surface

is

k_1=2/((1+u^2+v^2)^2)

And the smallest curvature is given by the equation

K_2=-2/((1+u^2+v^2)^2)

By this we can take the average of the two and get that the

mean curvature is zero.  This makes sense because if you



pick ant point on the surface and rotate a plane about the

normal vector, you will get a positive curvature and a

negative curvature.  The average of the two will be zero.

Let’s look at another example that is also given in

the same reference.  Let’s look at the following parametric

equation and its graph:

x(u,v)=(u,v,u^2-v^2) where u=x, v=y.

From the above we get:

h(u,v)=u^2-v^2



Now we need to take the partial derivatives of h(u,v)

h_u=2u

h_v=-2v

h_uu=2

h_vv=-2

h_uv=h_vu=0

The equation that is given for mean curvature is:

H=[(1+h_x^2)*h_yy-2h_x*h_y*h_xy+(1+h_y^2)h_xx]
2(1+h_x^2+h_y^2)^(3/2)

If we take the values from the example above we get:

H=((1+(2u)^2)(-2)+(1+(-2v)^2)(2))
(1+(2u)^2+(2v)^2)^(3/2)

From this we can infer that the mean curvature will be

zero.  This too makes sense because the figure formed by

the equation is a saddle.  If we pick the point at the

origin we can see that in one direction the curvature is

positive and in the other direction it is negative. Again

the average will be zero. If u=v, then H=0.

In conclusion, Jean Taylor concentrated her studies to

soap bubbles and soap films.  She proved Plateau’s problem

and concluded that bubbles have certain properties.  Some

of these properties include minimal surface area and

constant mean curvature.
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